University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription.

Author(s): C. Gonzalez-Santander, F. Dominguez-Adame and R. A. Roemer

Article Title: Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring

Year of publication: 2011

Link to published article:
http://dx.doi.org/10.1103/PhysRevB.84.235103

Excitonic Aharonov-Bohm effect in a two-dimensional quantum ring

C. González-Santander, 1 F. Domínguez-Adame, 1 and R. A. Römer 2

1 Departamento de Física de Materiales, Universidad Complutense de Madrid, E-28040 Spain
2 Department of Physics and Centre for Scientific Computing, University of Warwick, Coventry, CV4 7AL, United Kingdom

We study theoretically the optical properties of an exciton in a two-dimensional ring threaded by a magnetic flux. We model the quantum ring by a confining potential that can be continuously tuned from strictly one-dimensional to truly two-dimensional with finite radius-to-width ratio. We present an analytic solution of the problem when the electron-hole interaction is short-ranged. The oscillatory dependence of the oscillator strength as a function of the magnetic flux is attributed to the Aharonov-Bohm effect. The amplitude of the oscillations changes upon increasing the width of the quantum ring. We find that the Aharonov-Bohm oscillations of the ground state of the exciton decrease with increasing the width, but remarkably the amplitude remains finite down to radius-to-width ratios less than unity. We attribute this resilience of the excitonic oscillations to the non-simply connectedness of our chosen confinement potential with its centrifugal core at the origin.

PACS numbers: 71.35.Cc, 03.65.Ge

I. INTRODUCTION

Recent advances in nanofabrication of quantum rings and dots by self-assembling or lithographic etching techniques have opened an active area of research both theoretical and experimental. In such systems electrons and holes are confined in a small region and consequently the Coulomb interaction is enhanced. The existence of bound states of electron-hole pairs offers a unique opportunity to explore the Aharonov-Bohm (AB) effect for neutral excitons in quantum rings 22,23. Despite the exciton being a neutral entity it has been predicted to be sensitive to a magnetic flux due to its finite size inside a quantum ring 24,25. In experiments, this sensitivity would show as an oscillatory dependence of both the optical transition energy as well as the oscillator strength upon the magnetic flux 26,27,28. Theoretically, the excitonic AB effect has been studied by a variety of different approaches. A short-range interaction between the electron and the hole has been investigated for one-dimensional (1D) rings 12,13,14,15,16 where also the effect of an external electric field can be included. 26 Intermediate models assume two-dimensional (2D) rings with narrow width under harmonic confinement and Coulomb-like interaction potentials between the electron and the hole 21,22 or radial polarized excitons when electrons and holes move in different circles. 23 The excitonic AB effect in 2D rings has been studied in models with harmonic and geometric confining potential or using a 2D attractive annular Hubbard model 24,25. In all cases, the excitonic AB effect for neutral excitons has been argued to be suppressed in 2D as the width of the ring is increased. 26 Recently, experimental results in molecular-beam epitaxy grown nanorings made by AsBr3 etching and on self-assembled InAs/GaAs quantum dots 27 report oscillations in the binding energy of neutral excitons which may be accounted for by the excitonic AB effect.

In this paper, we consider the excitonic AB effect in a confining potential that can be continuously tuned from strictly 1D to truly 2D with finite radius-to-width ratio while preserving the central structure of a ring, namely, its non-simply connectedness due to an infinitely strong repulsion at the origin. 22 We present a simple analytic approach to the excitonic problem when the electron-hole attraction is short-ranged. 13,14 We then study how the amplitude of the AB oscillations in the oscillator strength changes upon increasing the width of the ring. We find that the AB oscillations of the exciton ground state energy decrease with increasing the width of the quantum ring, but nevertheless the effect remains noticeable down to regimes with radius-to-width ratios smaller than unity. This shows the robustness of the excitonic AB effect in 2D.

II. SINGLE PARTICLE STATES IN THE QUANTUM RING

In the absence of Coulomb interaction, the Hamiltonian of a single particle (electron or hole) subjected to a magnetic flux in a 2D quantum ring is given by

\[\hat{H}_i = \frac{1}{2m_i} (\mathbf{p}_i - q_i \mathbf{A})^2 + V(r_i) \] \hspace{1cm} (1)

where \(m_i, \mathbf{p}_i \) and \(\mathbf{A} \) are the effective mass, the momentum in the plane and magnetic vector potential, respectively. Here the subscript \(i = e, h \) refers to the electron and the hole, respectively. Electric charges are \(q_e = -e \) and \(q_h = e \). The quantum ring is modeled by an anharmonic, axially symmetric potential with a centrifugal core 22,233,34

\[V(r_i) = \frac{V_0}{2} \left[\frac{R^2}{r_i^2} + \frac{r_i^2}{R^2} \right] - V_0 \] \hspace{1cm} (2)

The confining potential has the minimum at \(|r_i| = R \) (see Fig. 1) and, for this reason, \(R \) will be used as a convenient
The measure of the effective ring radius. Close to the minimum the potential reduces to the well-known displaced parabola, $V(r_t) = 2V_0(r_t/R - 1)^2 \equiv (1/2)m_\omega^2(r_t - R)^2$, used in other theoretical studies of 2D quantum rings.26 As $r_t \to 0$, we see from [26] that the centrifugal core assures the survival of the essential feature of a ring: its repulsive barrier in the center. The effective width W of the quantum ring can be estimated from the single-particle ground state in the harmonic potential, namely $W = (\epsilon_0/2V_0)^{1/4}R$, where $\epsilon_0 = \hbar^2/2mR^2$ is the ring-size quantization energy.23 Notice that we assume that W is the same for electrons and holes, namely $m_e = m_h \equiv m$.

For the purpose of this work, all energies will be measured in units of ϵ_0 and we parametrize the strength of the confining potential by the radius-to-width ratio $\gamma \equiv W / R = (2V_0/\epsilon_0)^{1/4}$. When $\gamma \to \infty$, we approach the limit of a 1D ring, whereas $\gamma \to 0$ corresponds to an anti-dot geometry.22 Figure 1 shows the radial confining potential for different values of γ.

In order to study the AB effect in the quantum ring, we choose $A = (\lambda_1, A_0) = (0, \Phi/2\pi)$, corresponding to an infinitely thick magnetic flux piercing the plane of the ring perpendicularly. Here Φ is the dimensionless flux through the ring and \hbar/e the universal flux quantum.24 We note that due to the axial symmetry around the ring axis, all our results for energies have to be periodic in Φ with period 1 and we hence restrict ourselves to the sector $\Phi \in [0,1]$. Then the Schrödinger equation for the electron in polar coordinates $r_e = (r_e, \theta_e)$ is written in dimensionless form

$$\mathcal{H}_e \psi_{M_e}(r_e) = \lambda_{M_e} \psi_{M_e}(r_e) =$$

$$=- \frac{\partial^2}{\partial r_e^2} - \frac{1}{\rho_e} \frac{\partial}{\partial \rho_e} - \frac{1}{\rho_e^2} \frac{\partial^2}{\partial \theta_e^2} - \frac{2i\Phi}{\rho_e^2} \frac{\partial}{\partial \theta_e} + \frac{V_{M_e}}{\epsilon_0} \psi_{M_e}(r_e),$$

where $M_e = (n_e, \ell_e)$ represents the set of quantum numbers for the electron, which are $n_e = 0, 1, 2, \ldots$ and $\ell_e = 0, \pm 1, \pm 2, \ldots$ For brevity we define the dimensionless energy $\lambda_{M_e} = E_{M_e}/\epsilon_0$ and radial coordinate $r_e = r_e/R$.

The Schrödinger equation for the hole is the same aside from a change in sign in the linear term on Φ, and with a set of quantum numbers $M_h = (n_h, \ell_h)$.

The normalized eigenfunctions of Eq. (3) are given by32

$$\psi_{M_e}(r_e) = \frac{e^{-i\Phi/\rho_e}}{\sqrt{2\pi}} \mathcal{R}_{M_e}(r_e),$$

$$\mathcal{R}_{M_e}(r_e) = \frac{1}{R} \left[\begin{array}{c} \Gamma(n_e + 1) \\ 2^{k_e} \Gamma(n_e + k_e + 1) \end{array} \right]^{1/2} \times \left(\rho_e^2 \right)^{k_e} e^{-\rho_e^2 \gamma/4} \Gamma(n_e + k_e) \left(\frac{\rho_e^2 \gamma^2}{2} \right),$$

where $k_e = \sqrt{j^2_e + \gamma^2/4}$ with $j_e = \ell_e - \Phi$ defining an effective angular quantum number due to the confinement and the magnetic flux. L^k_e stands for the generalized Laguerre polynomials. The corresponding dimensionless energies are $\lambda_{M_e} = \gamma^2(2n_e + 1 + k_e) - \gamma^2/2$. The eigenfunctions and energies for the hole are the same as for the electron, with a effective angular quantum number $j_h = \ell_h + \Phi$. The dimensionless zero point energy $(n_e = \ell_e = \Phi = 0)$ for the electron is $\lambda_0 = \gamma^2$.

Figure 2 shows the electron energy as a function of the parameter γ. We note that levels at higher values of the quantum number n_e become increasingly uncoupled for $\gamma > 5$ and hence we expect to see nearly 1D behavior for γ values beyond this regime.22 From the inset is clearly observed that in this 2D confinement regime, in the absence of interaction, the ground state energy for the electron (once subtracted the zero point energy) describes an oscillation with the magnetic flux. For $\gamma > 5$, the 2D oscillation is indistinguishable from the 1D case.

FIG. 1. Plot of the radial dependence of the confining potential for $\gamma = 1$ (short-dashed), 2 (dashed), 5 (long-dashed) and 10 (solid). The strongly repulsive core at the origin remains very prominent even for decreasing γ.

FIG. 2. Dimensionless electron energy λ_{M_e} as function of the radius-to-width ratio γ. Solid, dashed, dotted, dotted-dashed and double-dotted-dashed lines corresponds to $n_e = 0, 1, 2, 3, 4$ and $\ell_e = 0$. For $n_e = 0$ we also show $\ell_e = 5, 10, 15, 20$. The flux is $\Phi = 0$ in all cases. The inset shows the flux dependence of the energy of the ground state for different γ. The black lines corresponds to 1D results.
III. SOLUTION OF THE EXCITONIC CASE

Within the effective-mass approximation, the Hamiltonian of the interacting electron-hole pair is given by \(\mathcal{H} = \mathcal{H}_e + \mathcal{H}_h + \mathcal{H}_{e-h} \), where \(\mathcal{H}_{e-h} \) is the interaction term. We model the excitonic interaction between the electron and the hole as a short-range potential of the form \(\mathcal{H}_{e-h}(r_e, r_h) = \frac{e^2}{\epsilon_0} \delta(r_e - r_h) \), where \(v_0 < 0 \) parametrizes the attractive interaction strength. This contact interaction is the same used in Refs. 14 and 20 extended to a 2D case, where the area of the ring is 2\(\pi R W \). In this definition we have carefully chosen the prefactors such that in the 1D limit, \(\gamma \to \infty \), the values of \(v_0 \) become identical to the corresponding 1D parameter and facilitate comparison with the results of Refs. 14 and 20. Thus, we express \(v_0 \) as \(-\alpha/\pi^2 \) where \(\alpha \) denotes the ratio of 1D excitonic Bohr radius to ring circumference.

Before continuing with the detailed study of the model, let us discuss some of the assumptions made and the limitations which we will encounter. Let us first emphasise that the restriction to equal electron and hole masses is simply a presentational convenience; all calculations shown here can easily be generalised to the case of unequal masses\(^\text{20} \) but with a certain loss of clarity in the mathematical expressions. Nevertheless, we shall present some results for unequal masses later. The assumption of an infinitely thin current-carrying solenoid generating the magnetic flux \(\Phi \) is a theoretical construct. The experiments cited in the introduction all use a magnetic field \(B \) to generate the required \(\Phi \). This results in an additional, diamagnetic term proportional to \(B^2 \), which we ignore here similarly to the experimental papers\(^\text{6,13,15} \).

Certainly the most drastic assumption seems to be the \(\delta \)-function potential for the two-particle interaction. Its use is of course motivated by our resulting ability to reduce the computational difficulties as we will show below. Nevertheless, we wish to emphasise that there are also certain conceptual advantages associated with it: (i) in 1D, the \(\delta \)-function interacting many-particle problem has been solved exactly and hence the expression for the exciton binding energy on a line is known in terms of \(v_0 \); (ii) In Ref. 14, it was shown how the Bohr radius of the exciton similarly depends on \(v_0 \). Both these parameters will of course vary when another form of interaction is considered. However, as also shown in Ref. 14, it is the ratio \(\alpha \) introduced above which governs the strength of the AB oscillations. The effect of other two-particle interaction potentials along the ring, when expressed in terms of \(\alpha \), will lead to similar AB oscillations and we expect at least qualitative agreement. Even for a long-range potential such as the Coulomb interaction, we expect this to hold as long as the overlap of wave packets on opposite sides of the ring, i.e. across the origin at \(r = 0 \), can be neglected. For the confining potential considered here, with its strong centrifugal core, this should be a rather good approximation.

We construct the exciton eigenfunction as a linear combination of the electron and hole single-particle eigenfunctions

\[
\Psi(r_e, r_h) = \sum_{M_e, M_h} A_{M_e, M_h} \psi_{M_e}(r_e) \psi_{M_h}(r_h). \tag{5}
\]

The Schrödinger equation for the electron-hole pair may now be cast in equivalent form

\[
\sum_{M_e, M_h} A_{M_e, M_h}(\lambda_{M_e} + \lambda_{M_h} - \Delta) \psi_{M_e}(r_e) \psi_{M_h}(r_h) + (2\pi)^{3/2} v_0 RW \delta(r_e - r_h) \Psi(r_e, r_h) = 0, \tag{6}
\]

where \(\Delta \) is the excitonic energy in units of \(\epsilon_0 \). Following an analogous procedure as in Ref. 20 the coefficients \(A_{M_e, M_h} \) are obtained multiplying Eq. (6) by \(\psi_{M_e}^\dagger(r_e) \psi_{M_h}^\dagger(r_h) \) and integrating over the coordinates

\[
A_{M_e, M_h} = \frac{(2\pi)^{3/2} v_0 RW}{\lambda_{M_e} + \lambda_{M_h} - \Delta} G_{M_e, M_h}, \tag{7}
\]

where we have defined

\[
G_{M_e, M_h} = \int d^2r \psi_{M_e}(r) \psi_{M_h}^\dagger(r) \tag{8}
\]

Setting \(r_e = r_h = r \) in the expansion of (9), multiplying by \(\psi_{M_e}^\dagger(r) \psi_{M_h}^\dagger(r) \) and integrating over the coordinates we finally obtain

\[
G_{M_e', M_h'} = \sum_{M_e, M_h} G_{M_e, M_h} P_{M_e, M_h, M_e', M_h'}(\Delta), \tag{9}
\]

with

\[
P_{M_e, M_h, M_e', M_h'} = -\frac{(2\pi)^{3/2} v_0 RW}{\lambda_{M_e} + \lambda_{M_h} - \Delta} \times \int d^2r \psi_{M_e}(r) \psi_{M_h}(r) \psi_{M_e'}^\dagger(r) \psi_{M_h'}^\dagger(r). \tag{10}
\]

To proceed we define the total angular momentum of the electron-hole pair in units of \(\hbar \) as \(L = l_e + l_h \). Because the system is axially symmetric, only states with \(L = L' \) can contribute to the excitonic system. This condition is even more restrictive under the dipole approximation, i.e. only excitons with total angular momentum \(L = 0 \) can absorb light polarized perpendicular to the ring. Therefore Eq. (10) reduces to

\[
P_{M_e, M_h, M_e', M_h'} = -\frac{\sqrt{2\pi} v_0 RW}{\lambda_{M_e} + \lambda_{M_h} - \Delta} \times \int_0^\infty dr \mathcal{R}_{M_e}(r) \mathcal{R}_{M_h}(r) \mathcal{R}_{M_e'}(r) \mathcal{R}_{M_h'}(r). \tag{11}
\]

We note that in the limit \(\gamma \to \infty \), the integrals in (11) reduce to \(1/\sqrt{2\pi} RW \) for \(n_e = n_h = n'_e = n'_h = 0 \) and \(l_e + l_h = l'_e + l'_h \). For other combinations of \(n_e, n_h, n'_e \), and \(n'_h \), the corresponding \(P_{M_e, M_h, M_e', M_h'} \) are less important due to the energy denominator in (11).
Similarly as for 1D quantum rings, there is no analytical solution of Eq. (9) for finite values of v_0. In order to find approximate solutions, we hence need to cut off the sums at some maximally allowed values for M_e and M_h. Figure 2 shows that for smaller values of γ, i.e. increasing ring width W, the level separation between the quantum states of the single particles is decreased. Therefore we use different ℓ_{max} and n_{max} values depending on our choice of γ. We have tested that our results do not change appreciably for the range of Φ and v_0 considered here. As in Ref. 21, Eq. (9) is reformulated as a standard left-eigenvalue equation $G_{K'} = \sum_K G_K P_{K K'}(\Delta)$ after mapping the quantum numbers $M_e, M_h \rightarrow K$ and $M'_e, M'_h \rightarrow K'$ according to $K = (\ell + \ell_{\text{max}})(n_{\text{max}} + 1)^2 + n_e(n_{\text{max}} + 1) + n_h + 1$ such that $K, K' = 1, 2, \ldots, (1 + 2\ell_{\text{max}})(1 + n_{\text{max}})^2$. The excitonic energies are obtained numerically by determining G and M. An advantage of our approach is that it allows us to target the ground state directly by choosing a suitable starting value for Δ.

IV. RESULTS

In Fig. 3 we plot the ground state energy Δ defined by Eq. (9) with $\ell_{\text{max}} = 40$ for $\gamma > 0.5$ and $n_{\text{max}} = 5$ ($K_{\text{max}} = 2916$) for $\gamma < 5$ or $n_{\text{max}} = 2$ ($K_{\text{max}} = 729$) for $\gamma > 5$ and as a function of v_0 for different values of γ. For $\gamma = 0.5$ we have used $\ell_{\text{max}} = 30$ and $n_{\text{max}} = 6$ ($K_{\text{max}} = 2989$). Here and in all following figures, when plotting the excitonic energies Δ, we have subtracted the zero-point energy $2\gamma^2$ of the non-interacting electron-hole system.

We see that for all γ and Φ values, the increase of the interaction strength v_0 leads to the formation of a state with decreasing energy values below the onset of the free-particle continuum. We also compare in Fig. 4 the 2D exciton results with the 1D ring studied in Refs. 14 and 21. When the radius of the ring is 10 times its width ($\gamma = 10$) the 2D excitonic behavior is essentially indistinguishable from the 1D results in the range of v_0 values studied. In particular, the differences between energies at different flux values at large γ decrease. Nevertheless, for small $\gamma \lesssim 3$ different magnetic flux values lead to quite distinct Δ values — even in a 2D quantum ring the exciton is sensitive to the magnetic flux. It is also interesting to note that for large γ, the ground state energies are more negative for larger values of v_0 whereas for $\gamma \lesssim 1$ we find evidence that smaller γ values lead to smaller differences between different values of Φ.

The above results have been obtained assuming the same effective mass for the electron and the hole. To address the question of the robustness of the excitonic AB effect in a more realistic situation with different effective masses, we have calculated the exciton energy as a function of the ratio m_e/m_h. Let us define the amplitude of the excitonic AB oscillations as the difference of the exciton energy at $\Phi = 1/2$ and $\Phi = 0$, namely $\Delta(1/2) - \Delta(0)$. The inset of Fig. 3 shows this amplitude as a function of the ratio m_e/m_h for different values of the radius-to-width ratio γ at interaction strength $v_0 = -2/\pi^2$. In 2D rings ($\gamma = 0.5$) the energy difference is almost constant and the assumption of equal masses is well justified. Upon approaching the 1D limit, i.e. increasing γ, the amplitude of excitonic AB oscillations is reduced but the effect is still revealed. As an example, in common III-V compound semiconductors the ratio of the electron and light hole masses typically ranges from 0.6 to 0.9, and it can be seen in the inset of Fig. 3 that the reduction of the amplitude is small.

Figure 4 shows the AB oscillations of the exciton energy as a function of the magnetic flux Φ within one flux period at different values of γ and v_0. In agreement with Fig. 3 we find that the AB oscillations are retained for radius-to-width ratios ranging from $\gamma = 0.5$ to 10. This shows that the excitonic AB effect remains robust even in a ring of finite width. Upon increasing the γ values for different Φ values, we find mostly a moderate increase of the exciton energy, except in the vicinity of $\Phi = 0.5$ where even the reverse tendency can be observed.

In Fig. 5 we plot the amplitude of the excitonic AB oscillations for different interaction strength $v_0 = -1/\pi^2, -2/\pi^2, -3/\pi^2$ as γ is varied. We see that upon decreasing γ from the nearly 1D behaviour at $\gamma = 10$ towards $\gamma \approx 1.5$, there is only a slight decrease in the amplitude of the AB oscillations. Upon further decreasing γ, the oscillations weaken more rapidly, but even at
\[\Delta = \text{function of } \Phi \text{ and } \gamma \]

\[F = \frac{\int d^2r \Psi(r, r)^2}{\int d^2r \int d^2r_h |\Psi(r, r_h)|^2}, \quad (12) \]

is plotted in Fig. 7. Large values of \(F \) correspond to a large transition matrix element from the exciton ground state into the vacuum. We find from Fig. 7 that the results for large \(\gamma \) are in good agreement with the 1D results. And when decreasing the radius-to-width ratio \(\gamma \), the value of \(F \) does not suddenly drop to zero, again emphasizing the robustness of the excitonic AB effect in ring of finite width.

V. Conclusions

Our results suggest that the excitonic AB effect originally predicted for a 1D model remains essentially unchanged when allowing for rings of finite widths as given by (2). We find that when we enlarge the ring width by one order of magnitude from \(1/\gamma = 1/10 \) to 1, the magnitude of the AB oscillations drops by about 15% only. In addition, we show that the qualitative behavior of the oscillations both for the spectral position as well as the oscillator strengths of the exciton luminescence lines are again governed by the relative strength of attractive Coulomb interaction to ring radius. Our results are in good agreement with recent experimental observations where the magnitude of the excitonic AB oscillations was observed to be about 0.5 meV at binding energies of 4.35 mV for rings of about 11–22 nm radius and \(\gamma \approx 1 \). We also note that our confining potential has been chosen to retain its non-simply connectedness due to the infinitely repulsive centrifugal core at the centre. Hence even for very wide rings, there is an essential difference with respect to the previously considered 2D confining potentials. This demonstrates that it is not so much the width or the exact shape of the confining potential, but rather the avoidance of the ring centre which is the important ingredient needed for the experimental observation of the excitonic AB effect.

Last, we expect that the effects of external electric fields and the formation of charged excitons remain similarly robust in 2D, whereas disorder effects should be less important than in the 1D case.

Acknowledgments

We thank Andrea Fischer for valuable discussions and a critical reading of the manuscript. CGS is grateful to the Centre for Scientific Computing for hospitality and to Ministerio de Educación, Comunidad de Madrid and the European Social Fund for funding the research stays at Warwick during which much of this work was done.
FIG. 6. Dependence of the local wavefunction probability $|\Psi|^2$ on (a,c) angular coordinates θ_e, θ_h and (b,d) radial coordinates $\rho_e = r_e/R$, $\rho_h = r_h/R$ for $\gamma = 1$ (a,b), and 10 (c,d) for $v_0 = -2/\pi^2$ and $\Phi = 0$. The values of $|\Psi(\theta_e, \theta_h)|^2$ and $|\Psi(\rho_e, \rho_h)|^2$ have been normalized to lie in $[0, 1]$. The colors go from $|\Psi|^2 \in [0.9, 1]$ (red) to $|\Psi|^2 \in [0, 0.1]$ (blue) in steps of 0.05 for (a,c), 0.2 for (b) and 0.1 for (d). The thick black lines indicate in (b) and (d) the width W of the ring in each case.

FIG. 7. Normalized oscillator strength $[F(\Phi) - F(0)]/F(0)$ as a function of magnetic flux Φ for $\gamma = 0.5, 1, 2, 5$ and 10 at interaction strength $v_0 = -2/\pi^2$. Only every second data point is shown for clarity.

Work at Madrid was supported by MICINN (projects Mosaico and MAT2010-17180).
(2000).
34 The vector potential is defined as usual such that \[\oint A \cdot d\mathbf{r} = \Phi h/e. \]