
The Library
Time resolved velocity map imaging of H-atom elimination from photoexcited imidazole and its methyl substituted derivatives
Tools
Hadden, David J., Wells, Kym Lewis, Roberts, Gareth M., Bergendahl, L. Therese, Paterson, Martin J. and Stavros, Vasilios G. (2011) Time resolved velocity map imaging of H-atom elimination from photoexcited imidazole and its methyl substituted derivatives. Physical Chemistry Chemical Physics, Vol.13 (No.21). pp. 10342-10349. doi:10.1039/c1cp20463g ISSN 1463-9076.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1039/C1CP20463G
Abstract
The photoresistive properties of DNA bases, amino acids and corresponding subunits have received considerable attention through spectroscopic studies in recent years. One photoresistive property implicates the participation of 1πσ* states, allowing electronically excited states to evolve either back to the electronic ground state or undergo direct dissociation along a heteroatom–hydride (X–H) coordinate. To this effect, time-resolved velocity map imaging (TR-VMI) studies of imidazole (a subunit of both adenine and histidine) and methylated derivatives thereof have been undertaken, with the goal of understanding the effects of increasing molecular complexity, through methylation, on the dynamics following photoexcitation at 200 nm. The results of these measurements clearly show that H-atom elimination along the N–H coordinate results in a bimodal distribution in the total kinetic energy release (TKER) spectra in both imidazole and it's methylated derivatives: 2-methyl, 4-methyl and 2,4-dimethylimidazole. The associated time constants for H-atoms eliminated with both high and low kinetic energies are all less than 500 fs. A noticeable increase in the time constants for the methylated derivatives is also observed. This could be attributed to either: ring methylation hindering in-plane and out-of-plane ring distortions which have been implicated as mediating excited state dynamics of these molecules or; an increase in the density of vibrational states at 200 nm causing an increased sampling of orthogonal modes, as opposed to modes which drive any dynamics that cause subsequent H-atom elimination. The results of these findings once again serve to illustrate the seemingly ubiquitous nature of 1πσ* states in the photoexcited state dynamics of biomolecules and their subunits.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QD Chemistry | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Chemistry | ||||
Library of Congress Subject Headings (LCSH): | Photochemistry, Imidazoles, Molecular dynamics, Methylation | ||||
Journal or Publication Title: | Physical Chemistry Chemical Physics | ||||
Publisher: | Royal Society of Chemistry | ||||
ISSN: | 1463-9076 | ||||
Official Date: | 2011 | ||||
Dates: |
|
||||
Volume: | Vol.13 | ||||
Number: | No.21 | ||||
Page Range: | pp. 10342-10349 | ||||
DOI: | 10.1039/c1cp20463g | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Funder: | Engineering and Physical Sciences Research Council (EPSRC), Leverhulme Trust (LT), Seventh Framework Programme (European Commission) (FP7), Royal Society (Great Britain), University of Warwick, European Research Council (ERC) | ||||
Grant number: | EP/E011187 (EPSRC), EP/H003401 (EPSRC), 258990 (ERC), FP7/2007-2013 (FP7) |
Data sourced from Thomson Reuters' Web of Knowledge
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |