The Library
Theory of stochastic resonance for small signals in weakly damped bistable oscillators
Tools
Landa, P. S. (Polina Solomonovna), Khovanov, I. A. and McClintock, P. V. E.. (2008) Theory of stochastic resonance for small signals in weakly damped bistable oscillators. Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), Vol.77 (No.1). Article: 011111. ISSN 15393755

PDF
WRAP_KHovanov_0870568es121211ikhovanov08_01.pdf  Accepted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (225Kb) 
Official URL: http://dx.doi.org/10.1103/PhysRevE.77.011111
Abstract
The response of a weaklydamped bistable oscillator to an external periodic force is considered theoretically. In the approximation of weak signals we can write a linearized equation for the signal and the corresponding nonlinear equation for the noise. These equations contain two unknown parameters: an effective stiffness and an additional damping factor. In the case of the weaklydamped bistable oscillator, considered here, the twodimensional Fokker–Planck equation corresponding to the equation for the noise can be solved approximately by changing to a slow variable (“energy”) and applying a method of successive approximation. This approach allows us to find the unknown parameters and to calculate the amplitude ratio of the output and input signals, i.e. the gain factor.
[error in script] [error in script]Item Type:  Journal Article 

Subjects:  Q Science > QC Physics T Technology > TA Engineering (General). Civil engineering (General) 
Divisions:  Faculty of Science > Engineering 
Library of Congress Subject Headings (LCSH):  Oscillations  Mathematical models 
Journal or Publication Title:  Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) 
Publisher:  American Physical Society 
ISSN:  15393755 
Date:  11 January 2008 
Volume:  Vol.77 
Number:  No.1 
Number of Pages:  12 
Page Range:  Article: 011111 
Identification Number:  10.1103/PhysRevE.77.011111 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
Funder:  Royal Society (Great Britain), Engineering and Physical Sciences Research Council (EPSRC) 
References:  [1] R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A: Math. Gen. 14, L453 (1981). [2] C. Nicolis, Tellus 34, 1 (1982). [3] R. Benzi, G. Parisi, A. Sutera, and A. Vulpiani, Tellus 34, 10 (1982). [4] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks, Nuovo Cimento D 17, 661 (1995). [5] L. Gammaitoni, P. H¨anggi, P. Jung, and F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998). [6] V. S. Anishchenko, A. B. Neiman, F. Moss, and L. SchimanskyGeier, Soviet Phys. – Uspekhi Fiz. Nauk. 39, 7 (1999). [7] P. S. Landa, Regular and Chaotic Oscillations (Springer Verlag, Berlin, 2001). [8] I. I. Blekhman, Vibrational Mechanics. (World Scientific, Singapore, 2000) [9] P. S. Landa, and P. V. E. McClintockm J. Phys. A 33, L433 (2000). [10] M. Borromeo, and F. Marchesoni, Phys. Rev. Lett. 99, 150605 (2007). [11] S. Fauve and F. Heslot, Phys. Lett. A 97, 5 (1983). [12] R. N. Mantegna, and B. Spagnolo, Phys. Rev. E 49, R1792 (1994). [13] R. N. Mantegna, B. Spagnolo, and M. Trapanese, Phys. Rev. E 63, 011101 (2001). [14] B. McNamara, K. Wiesenfeld, and R. Roy, Phys. Rev. Lett. 60, 2626 (1988). [15] P. S. Landa and V. G. Ushakov, Pis’ma JETF 86, 000 (2007). [16] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks, Phys. Rev. Lett. 65, 2606 (1990). [17] P. Debye, Polar Molecules (Dover publications, Inc., New York, 1929). [18] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks, Phys. Rev. Lett. 68, 2985 (1992). [19] M. I. Dykman, R. Mannella, P. V. E. McClintock, and N. G. Stocks, Phys. Rev. Lett. 70, 874 (1993). [20] N. G. Stocks, N. D. Stein, and P. V. E. McClintock, J. Phys. A: Math. Gen. 26, L385 (1993). [21] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks, Sov. Phys. JETP Lett. 58, 150 (1993). [22] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks, Phys. Rev. E 49, 1198 (1994). [23] P. S. Landa, Doklady Physics 49, 706 (2004). [24] P. Landa, V. Ushakov, and J. Kurths, Chaos, Solitons & Fractals 30, 574 (2006). [25] P. S. Landa, Y. I. Neimark, and P. V. E. McClintock, J. Stat. Phys. 125, 593 (2006). [26] L. Gammaitoni, F. Marchesoni, E. MenichellaSaetta, and S. Santucci, Phys. Rev. Lett. 62, 349 (1989). [27] M. I. Dykman, P. V. E. McClintock, R. Mannella, and N. G. Stocks, Pis’ma Zh. Eksp. Teor. Fiz. [JETP lett.] 52, 780 (1990). [28] L. Alfonsi, L. Gammaitoni, S. Santucci, and A. R. Bulsara, Phys. Rev. E 62, 299 (2000). [29] Y.M. Kang, J.X. Xu, and Y. Xie, Phys. Rev. E 68, 036123 (2003). [30] D. Valenti, L. SchimanskyGeier, X. Sailer, and B. Spagnolo, Eur. Phys. J. B 50, 199 (2006). [31] M. I. Dykman, D. G. Luchinsky, R. Mannella, P. V. E. McClintock, N. D. Stein, and N. G. Stocks, J. Stat. Phys. 70, 479 (1993). [32] Note that this definition is based on that applied to linear systems, whereas the signaltonoise ratio for a nonlinear system is ambiguously determined. [33] The power spectrum P(Ω) was calculated by the periodogram method with a rectangular time window, and signal amplitude spectrum F(Ω) was calculated by the base2 fast Fourier transform: P(Ωj) = 1 N ΣN k=1 F2 k (Ωj ), N = 300 is the number of periodograms. The length of the periodogram was equal to 65536 points and the time sampling interval was Δ = 2=(!2k), where k = 4. Given the last condition, the leakage effect is absent for a periodic signal of frequency !, i.e. one frequency bin ΔΩ contains all the power of the harmonic signal. To avoid aliasing, a lowfrequency linear filter with cutoff frequency 5! was used. [34] R. L. Stratonovich, Vestnik MGU No. 4 pp. 99–102 (1960). [35] R. L. Stratonovich, Topics in the Theory of Random Noise, vols. 1 & 2 (Gordon and Breach, New York, 1963, 1967). [36] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965). 
URI:  http://wrap.warwick.ac.uk/id/eprint/40479 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 