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NETWORK INFERENCE AND BIOLOGICAL DYNAMICS

By Chris. J. Oates ∗,† and Sach Mukherjee †,∗

University of Warwick∗ and Netherlands Cancer Institute†

Network inference approaches are now widely used in biological ap-
plications to probe regulatory relationships between molecular com-
ponents such as genes or proteins. Many methods have been proposed
for this setting, but the connections and differences between their
statistical formulations have received less attention. In this paper,
we show how a broad class of statistical network inference methods,
including a number of existing approaches, can be described in terms
of variable selection for the linear model. This reveals some subtle
but important differences between the methods, including the treat-
ment of time intervals in discretely observed data. In developing a
general formulation, we also explore the relationship between single-
cell stochastic dynamics and network inference on averages over cells.
This clarifies the link between biochemical networks as they operate
at the cellular level and network inference as carried out on data that
are averages over populations of cells. We present empirical results,
comparing thirty-two network inference methods that are instances of
the general formulation we describe, using two published dynamical
models. Our investigation sheds light on the applicability and limi-
tations of network inference and provides guidance for practitioners
and suggestions for experimental design.

1. Introduction. Networks of molecular components such as genes,
proteins and metabolites play a prominent role in molecular biology. A graph
G = (V,E) can be used to describe a biological network, with the vertices V
identified with molecular components and the edges E with regulatory rela-
tionships between them. For example, in a gene regulatory network (Babu et
al., 2004; Davidson, 2001), nodes represent genes and edges transcriptional
regulation, while in a protein signaling network (Yarden and Sliwkowski,
2001), nodes represent proteins and edges may represent the enzymatic in-
fluence of the parent on the biochemical state of the child, for example via
phosphorylation. In many biological contexts, including disease states, the
edge structure of the network may itself be uncertain (e.g. due to genetic or
epigenetic alterations). Then, an important biological goal is to characterize
the edge structure (often referred to as the “topology” of the network) in a
context-specific manner, that is, using data acquired in the biological con-
text of interest (e.g. a type of cancer, or a developmental state). Advances
in high-throughput data acquisition have led to much interest in such data-
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2 C. J. OATES AND S. MUKHERJEE

driven characterization of biological networks. Statistical approaches play
an increasingly important role in these “network inference” efforts. From a
statistical perspective, the goal can be viewed as making inference regarding
the edge structure E in light of biochemical data y. Since aspects of biolog-
ical dynamics may not be identifiable at steady-state, time-varying data is
usually preferred, and this is the setting we focus on here. In many appli-
cations the data y arise from “global perturbation” of the cellular system,
for example by varying culture conditions or stimuli. The extent to which
networks can be characterized using global perturbations remains poorly
understood, since it is likely that such data expose only a subspace of the
phase space associated with cellular dynamics.

The importance of network inference in diverse biological applications,
from basic biology to diseases such as cancer, has spurred vigorous activity
in this area. Many specific methods have been proposed, in the statistical
literature as well as in bioinformatics and bioengineering, with some popu-
lar approaches reviewed in Bansal et al. (2007); Bonneau (2008); Hecker et
al. (2009); Lee and Tzou (2009); Markowetz and Spang (2007). Graphical
models play a prominent role in this literature, as does variable selection. A
distinction is often made between statistical and “mechanistic” approaches
(Ideker and Lauffenburger, 2003). The former is usually used to refer to
models that are built on conventional regression formulations and variants
thereof, while the latter usually refers to models that are explicitly rooted
in chemical kinetics, e.g. systems of coupled ordinary differential equations
(ODEs). This distinction is somewhat artificial, since it is possible in prin-
ciple to carry out formal statistical network inference based on mechanistic
models (e.g. systems of ODEs), although this remains challenging (Xu et
al., 2010).

Many network inference schemes are based on formulations that are closely
related in terms of the underlying statistical model. For example, vector au-
toregressive (VAR) models (including Granger causality-related approaches
as special cases; Bolstad et al. (2011); Meinshausen and Bühlmann (2006);
Morrissey et al. (2010); Opgen-Rhein and Strimmer (2007); Zou and Feng
(2009)), linear dynamic Bayesian networks (DBNs; Kim et al. (2003)), and
certain ODE-based approaches (Bansal and di Bernardo, 2007; Li and Chen,
2010; Nam et al., 2007) are intimately related, being based on linear re-
gression, but with potentially differing approaches to variable selection. In
recent years, several empirical comparisons of competing network inference
schemes have emerged, including Altay and Emmert-Streib (2010); Bansal
et al. (2007); Hache et al. (2009); Smith et al. (2002); Werhli et al. (2006).
Assessment methodology has received attention, including attempts to au-
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tomate the generation of large scale biological network models for automatic
benchmarking of performance (Marbach et al., 2009; Van den Bulcke et al.,
2006). In particular the Dialogue for Reverse Engineering Assessments and
Methods (DREAM) challenges (Prill et al., 2010) have provided an oppor-
tunity for objective empirical assessment of competing approaches. At the
same time developments in synthetic biology have led to the availability of
gold standard data from hand-crafted biological systems, such that the un-
derlying network is known by design (Camacho and Collins, 2009; Cantone
et al., 2009; Minty et al., 2009). However relatively little attention has been
paid to the (sometimes contrasting) assumptions of the statistical formula-
tions underlying these network inference schemes.

Inferential limitations due to estimator bias and nonidentifiability remain
incompletely understood. It is clear that chemical reaction networks (CRNs;
these are graphs that give detailed descriptions of individual reactions com-
prising the overall system) underlying biological networks are not in general
identifiable (Craciun and Pantea, 2008). Indeed, there exist topologically
distinct CRNs which produce identical dynamics under mass-action kinet-
ics. Moreover even when the true network structure is known, reaction rates
themselves may be nonidentifiable. However, mainstream descriptions of bi-
ological networks, e.g. gene regulatory or protein signaling networks, are
coarser than CRNs. Such networks are useful because they are closely tied
to validation experiments in which interventions (e.g. RNA interference or
inhibitors) target network vertices. For example, inference of an edge in a
gene regulatory network corresponds to the qualitative prediction that in-
tervention on the parent will influence the child (via transcription factor
activity). It remains unclear to what extent such biological network struc-
ture can be usefully identified from various kinds of data. On the other
hand Wilkinson (2006, 2009) discuss a number of general issues relating to
stochastic modeling for systems biology, but do not discuss network infer-
ence per se in detail. This paper complements existing empirical work by
focusing on statistical issues associated with linear models commonly used
in network inference applications.

Network inference methods can be viewed as generating hypotheses about
cell biology. Yet the link between biochemical networks at the cellular level
and network inference as applied to bulk or aggregate data (i.e. data that are
averages over large numbers of cells) from assays such as microarrays remains
unclear. In applications to noisy time-varying data there is uncertainty in
the predictor variables of the same order of magnitude as uncertainty in the
responses, yet often only the latter is explicitly accounted for. Moreover, the
treatment of time intervals in discretely observed data remains unclear, with
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contradictory approaches appearing in the literature. Most high-throughput
assays, including array based technologies (e.g. gene expression or protein ar-
rays), as well as single-cell approaches (e.g. FACS-based) involve destructive
sampling, i.e. cells are destroyed to obtain the molecular measurements. The
impact of the resulting nonlongitudinality upon inference does not appear
to have been investigated.

The contributions of this paper are threefold. First, we explore the con-
nection between biological networks at the cellular level and the linear sta-
tistical models that are widely used for inference. Starting from a description
of stochastic dynamics at the single-cell level we describe a general statistical
approach rooted in the linear model. This makes explicit the assumptions
that underlie a broad class of network inference approaches. This also clar-
ifies the relationship between “statistical” and “mechanistic” approaches to
biological networks. Second, we explore how a number of published network
inference approaches can be recovered as special cases of the model we arrive
at. This sheds light on the differences between them, including how different
assumptions lead to quite different treatments of the time step. Third, we
present an empirical study comparing 32 different approaches that are spe-
cial cases of the general model we describe. To do so, we simulate stochastic
dynamics at the single-cell level from known networks, under global pertur-
bation of two published dynamical models. This enables a clear assessment
of the network inference methods in terms of estimation bias and consis-
tency, since the true data-generating network is known. Furthermore, the
simulation accounts for both averaging over cells, nonlongitudinality due
to destructive sampling and the fact that only a subspace of the dynamical
phase space is explored. Using this approach, we investigate a number of data
regimes, including both even and uneven sampling, longitudinal and non-
longitudinal data and the large sample, low noise limit. We find that the net
effect of predictor uncertainty, nonlongitudinality and limited exploration of
the dynamical phase space is such that certain network estimators fail to
converge to the data-generating network even in the limits of large datasets
and low noise. However, we point to a simple formulation which might rep-
resent a default choice, delivering promising performance in a number of
regimes.

An implication of our analysis is that uneven time steps may pose infer-
ential problems, even when using models that apparently handle the sam-
pling intervals explicitly. We therefore investigate this case by carrying out
network inference on unevenly sampled data using a variety of statistical
models. We find that the ability to reconstruct the data-generating network
is much reduced in all cases, with some approaches faring better than others.
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Since biological data are often unevenly resolved in time, this observation
has important implications for experimental design.

The remainder of this paper is organized as follows. We begin in Section
2 with a description of stochastic dynamics in single-cells and show how a
series of assumptions allow us to arrive at a statistical framework rooted
in the linear model. Section 3 contains an empirical comparison of several
inference schemes, addressing questions of performance and consistency in a
number of regimes. In Section 4 we discuss our results and point to several
specific areas for future work.

2. Methods. The cellular dynamics that underlie network inference are
subject to stochastic effects (Elowitz et al., 2002; Kou et al., 2005; McAdams
and Arkin, 1997; Paulsson, 2005; Swain et al., 2002). We therefore begin
our description of the data-generating process at the level of single cells
and then discuss the relationship to aggregate data of the kind acquired in
high-throughput biochemical assays. We then develop a general statistical
approach, rooted in the linear model, for data from such a system observed
discretely in time. We discuss inference and show how a number of exist-
ing approaches can be recovered as special cases of the general model we
describe. Our exposition clarifies a number of technical but important dis-
tinctions between published methodologies, which until now have received
little attention.

2.1. Data-generating process.

2.1.1. Stochastic dynamics in single cells. Let X = (X1, . . . , XP ) ∈ X
denote a state vector describing the abundance of molecular quantities of
interest, on a space X chosen according to physical and statistical considera-
tions. The components of the state vector (e.g. mRNA, protein or metabolite
levels) are identified with the vertices of the graph G that describes the bi-
ological network of interest. In this paper the “expression levels” X(t) of
a single cell at time t are modeled as continuous random variables that
we assume satisfy a time-homogenous stochastic delay differential equation
(SDDE)

dX = f(FX)dt+ g(FX)dB(1)

where f ,g are drift and diffusion functions respectively, FX(t) = {X(s) : s ≤ t}
is the natural filtration (the history of the state vector X) and B denotes a
standard Brownian motion. A continuous state space X is appropriate as a
modeling assumption only if the copy numbers of all molecular components
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are sufficiently high. This is thought to be the case for the biological systems
considered in this paper, but in general the stochasticity due to low copy
number will need to be encoded into inference (Paulsson, 2005). The edge
structure E of the biological network G is defined by the drift function f ,
such that (i, j) ∈ E ⇐⇒ fj(X) depends on Xi.

We further assume that the functions f ,g are sufficiently regular and de-
pend only on recent history FX([t − τ, t]). For example in the context of
gene regulation τ might be the time required for one cycle of transcription,
translation and binding of a transcription factor to its target site; the char-
acteristic time scale for gene regulation. This is a finite memory requirement
and can be considered a generalization of the Markov property. Equivalently,
this property codifies the modeling assumption that the observed processes
are sufficient to explain their own dynamics; that there are no latent vari-
ables. It is common practice to take τ = 0, in which case the process defined
by Eqn. 1 is Markovian. This stochastic dynamical system with phase space
{(f(FX),X) : X ∈ X} forms the basis of the following exposition.

2.1.2. Aggregate data. A variety of experimental techniques, including
notably microarrays and related assays, capture average expression levels
X(N) :=

∑N
k=1X

k/N over cells, where Xk denotes the expression levels in
cell k. This paper does not consider effects due to inter-cellular signaling,
which are typically assumed to be negligible. Then averaging sacrifices the
finite memory property (a generalization of the fact that the sum of two
independent Markov processes is not itself Markovian). However it is usually
possible to construct a finite memory approximation of the form

dX(N) = f (N)(FX(N))dt+ g(N)(FX(N))dB(N)(2)

using a so-called “system size expansion” (Van Kampen, 2007). Approxi-
mations of this kind derive from a coarsening of the underlying state space,
assuming that the new state vector X(N) captures every quantity relevant
to the dynamics. The statistical models discussed in this paper rely upon
coarsening assumptions in order to control the dimensionality of state space.

Using the mild regularity conditions upon cellular stochasticity g the
laws of large numbers gives that in the large sample limit the sample av-
erage X∞ := limN→∞X(N) = E(X) equals the expected state of a single
cell (almost surely). We note that the relationship between the single-cell
dynamics as it appears in Eqn. 1 and this deterministic limit may be com-
plicated, since in general E(f(FX)) 6= f(FE(X)). However for linear f , say for
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simplicity f ≡ f(X) = AX, we have

dX(N) =
1

N

N∑
k=1

dXk =
1

N

N∑
k=1

(
f(FXk)dt+ g(FXk)dBk

)
(3)

=
1

N

N∑
k=1

AXkdt+
1

N

N∑
k=1

g(FXk)dBk

= A

(
1

N

N∑
k=1

Xk

)
dt+ R(N)

= AX(N)dt+ R(N) = f(FX(N))dt+ R(N)

where R(N) :=
∑

k g(FXk)dBk/N → 0 almost surely as N → ∞, and so
dX∞/dt = f(FX∞). In other words, the average over large numbers of cells
shares the same drift function as the single cell, so that inference based on
averaged data applies directly to single cell dynamics. Otherwise this may
not hold, that is dX∞/dt = dE(X)/dt = E(f(FX)) 6= f(FE(X)) = f(FX∞).
This has implications when using nonlinear forms, such as Michaelis-Menten
or Hill kinetics, to describe the behavior of a large sample average; these non-
linear functions are derived from single cell biochemistry and may not apply
equally to the large sample average X∞. The error entailed by commuting
drift and expectation may be assessed using the multivariate Feynman-Kac
formula for X∞ = E(X) (Øksendal, 1998).

In practice the observation process may be complex and indirect, for ex-
ample measurements of gene expression may be relative to a “housekeep-
ing” gene, assumed to maintain constant expression over the course of the
experiment. Moreover the details of the error structure will depend cru-
cially on the technology used to obtain the data. To limit scope, this arti-
cle assumes the averaged expression levels X∞(t) are observed at discrete
times t = tj (0 ≤ j ≤ n) with additive zero-mean measurement error as
Y(tj) = X∞(tj)+wj , where the wj are independent, identically distributed
uncorrelated Gaussian random variables.

2.2. Discrete time models. Network inference is usually carried out us-
ing coarse-grained models (Eqn. 2) that are simpler and more amenable to
inference than the process described by Eqn. 1. Here, informed by the fore-
going treatment of cellular dynamics, we develop a simple network inference
model for data observed discretely in time. We clarify the assumptions of
the statistical model, and show how several published approaches can be
recovered as special cases.
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2.2.1. Approximate discrete time likelihood. Network inference entails
statistical comparison of networks G ∈ G, where G denotes the space of
candidate networks. The space G may be large (naively, there are 2P×P pos-
sible networks on P vertices), although biological knowledge may provide
constraints. Network comparisons require computation of a model selection
score for each network that is considered, which in turn entails use of the
likelihood (e.g. maximization of information criteria, or integration over the
likelihood in the Bayesian setting). Therefore, exploration over large model
spaces is often only feasible given a closed-form expression for the likelihood
(or preferably for the model score itself).

However the likelihood for a SDDE model (Eqn. 2) is not generally avail-
able in closed form. There has been recent research into computationally ef-
ficient approximate likelihoods for fully observed, noiseless diffusions (Hurn
et al., 2007), but it remains the case that the most efficient (though least ac-
curate) closed-form approximate likelihood is based on the Euler-Maruyama
discretization scheme for stochastic differential equations (SDEs), which in
the more general SDDE case may be written as (henceforth dropping the
superscript N)

X(tj) ≈ X(tj−1) + ∆jf(FX(tj−1)) + g(FX(tj−1))∆Bj(4)

where ∆Bj ∼ N(0,∆jI) and ∆j = tj − tj−1 is the sampling time interval.
Incorporating measurement error into this so-called Riemann-Itô likelihood
(Dargatz, 2010) requires an integral over the hidden states X which would
destroy the closed-form approximation. Therefore the observed, nonlongitu-
dinal data y are directly substituted for the latent states X, yielding the
(triply) approximate likelihood

L(θ) =

n∏
j=1

N (y(tj);µ(tj),Σ(tj))(5)

µ(tj) = y(tj−1) + ∆jf(Fy(tj−1))

Σ(tj) = ∆jg(Fy(tj−1))g(Fy(tj−1))
′.

Here N (•;µ,Σ) denotes a Normal density with mean µ and covariance Σ.
Implicit here is that the functions f ,g depend on Fy only through time lags
which coincide with the measurement times tj−1.

Thus L may be obtained from a state-space approximation to the original
SDDE model (Eqn. 2). Despite reported weaknesses with the Riemann-Itô
likelihood (Dargatz, 2010; Hurn et al., 2007) and the poorly characterized
error incurred by plugging in nonlongitudinal observations, this form of ap-
proximate likelihood is widely used to facilitate network inference (Eqns.
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5-6 correspond to a Gaussian DBN for the observations y, generalized to al-
low dependence on history). This is due both to the possibility of parameter
orthogonality, allowing inference to be performed for each network node sep-
arately, and the possibility of conjugacy, leading to a closed-form marginal
likelihood π(y|G).

2.2.2. Linear dynamics. Kinetic models have been described for many
cellular processes (Cantone et al., 2009; Schoeberl et al., 2002; Swat et al.,
2004; Wilkinson, 2009). However, statistical inference for these often non-
linear models may be challenging (Bonneau, 2008; Wilkinson, 2006, 2009;
Xu et al., 2010). Moreover, there is no guarantee that conclusions drawn
from cellular averages will apply to single cells, because as noted above the
deterministic behavior seen in averages may not coincide with the single cell
drift. However, linear dynamics satisfy E(f(FX)) = f(FE(X)) exactly, so that
conclusions drawn from verages apply directly to single cells. For notational
simplicity consider the Markovian τ = 0 regime. A Taylor approximation of
the cellular drift f about the origin gives

f(X) ≈ f(0) + Df |x=0X(6)

where Df is the Jacobian matrix of f . The constant term can be omitted
(f(0) = 0), since absent any regulators there is no change in expression.
Then, the Jacobian Df captures the dynamics approximately under a linear
model. Furthermore, the absence of an edge in the network G implies a
zero entry in the Jacobian, that is (i, j) /∈ E ⇒ (Df)ji = 0. Obtaining
the Jacobean at x = 0 therefore does not imply complete knowledge of
the edge structure E. We note that the general SDDE case is similar but
with additional differentiation required for the additional dependencies of f .
Henceforth we write equations for the simpler Markovian model, although
they hold more generally.

One may ask whether the restriction to linear drift functions allows the
computational difficulties associated with inference for continuous time mod-
els to be avoided, since in the Markovian (τ = 0) case both the SDE (Eqn.
1) and limiting ordinary differential equation (ODE) have exact closed form
solutions. In the ODE case, for example, X(t) = exp(At)X0 and under
Gaussian measurement error the likelihood has a closed form as products of
terms N (y(tj); exp(Atj)X0,M) where the parameters θ = (A,X0,M) in-
clude the model parameters A, initial state vector X0 and the measurement
error covariance M. Unfortunately evaluation of the matrix exponential is
computationally demanding and inference for the entries of A must be per-
formed jointly since in general exp(A) does not factorize usefully. It therefore
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remains the case that inference for continuous time models is computation-
ally burdensome, even when the models are linear.

2.2.3. The dynamical system as a regression model. The Jacobian Df
with entries (Df)i,j = ∂fi/∂xj |x=0 is now the focus of inference. We can
identify the Jacobian with the unknown parameters in a linear regression
problem by modeling the expression of gene p using[

dXp(t1)

...
dXp(tn)

]
≈

[
X1(t0) ... XP (t0)

...
...

X1(tn−1) ... XP (tn−1)

][
(Df)p,1

...
(Df)p,P

]
(7)

where the gradients dXp(tj) are approximated by finite differences, in this
case (Xp(tj) −Xp(tj−1))/∆j . Our notation for finite differences should not
be confused with the differentials of stochastic calculus. More generally for
processes with memory the matrix may be augmented with columns corre-
sponding to lagged state vectors and the vector (Df)p,• augmented with the
corresponding derivatives of the drift function f with respect to these lagged
states. To avoid confusion we write A for Df when discussing parameters,
since the drift f is unknown. Similarly, design matrices will be denoted by
B to suppress the dependence on the random variables X. So Eqn. 7 may
be written compactly as

dXp ≈ BA′p,•.(8)

Inference for the parameters Ap,• may be performed independently for each
variable p. Whilst Eqn. 8 is fundamental for inference, one can equivalently
consider the dynamically intuitive expression

dX(tj) ≈ AB′j,•.(9)

An interesting issue arises from the dual interpretation of the regression
model as a dynamical system (Eqn. 9), because there are natural restrictions
on A to avoid the solution tending to infinity. For instance if the sampling
interval ∆ is constant then we require R(λ) ≤ 0 for each eigenvalue λ of A+
∆I. The inference schemes which we discuss do not account for this, because
the condition forces a nontrivial coupling between rows Ap,•, jeopardizing
parameter orthogonality.

Finally, the generative model is specified by substituting noisy, nonlon-
gitudinal observables Y for latent variables X into Eqn. 9 and stating the
dependence of the approximation error on the sampling interval ∆j . Under
uncorrelated Gaussian measurement error we arrive at a model

dY(tj) ∼ N(AB′j,•, h(∆j)D(σ21, . . . , σ
2
P ))(10)
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where h : R+ → R+ is a variance function that must be specified and D(v)
represents the diagonal matrix induced by the vector v.

There are a number of ways in which this regression is non-standard.
For example, the substitution of (nonlongitudinal) observations for latent
variables is clearly unsatisfactory because the linear regression framework
does not explicitly allow for uncertainty in the predictor variables B. It
is unclear whether this introduces bias or leads to an overestimate of the
significance of results. Moreover, it is unclear how to choose the variance
function h, since the Euler-Maruyama approximation (Eqn. 4) is only valid
for small sampling intervals ∆j , but in this regime the responses dY(tj)
are dominated by measurement error, such that the data may carry little
information. These issues are investigated in Sections 3 and 4 below.

2.3. A unifying framework. Eqn. 10 describes a class of models with
specific instances characterized by choice of design matrix B and variance
function h. Since any such model corresponds to the linear regression Eqn.
7, the task of determining the edge structure of the network, or equivalently
the location of non-zero entries in the Jacobian A, can be cast as a variable
selection problem.

A number of specific network inference schemes can now be recovered by
fixing the design matrix and variance function and coupling the resulting
model with a variable selection technique. A selection of published network
inference schemes that can viewed in this way is presented in Table 1. One
might see these schemes classed as VAR models (Bolstad et al., 2011; Mor-
rissey et al., 2010; Opgen-Rhein and Strimmer, 2007; Zou and Feng, 2009),
DBNs (Hill et al., 2011; Kim et al., 2003), or ODE-based approaches (Bansal
and di Bernardo, 2007; Li and Chen, 2010; Nam et al., 2007), although as
we have demonstrated this classification disguises their shared foundation
in the linear model.

As shown in Table 1, the variance functions h, and therefore sampling
intervals ∆j , are not treated in a consistent way in the literature. In the
special case of even sampling times ∆j = ∆, a model is characterized only
by its design matrix. If the standard design matrix is used then the entire
family of models

Y(tj)−Y(tj−1)

∆
∼ N(AY(tj−1), h(∆)D(σ21, . . . , σ

2
P ))(11)

reduces to a linear VAR(1) model

Y(tj) ∼ N(ĀY(tj−1),D(σ̄21, . . . , σ̄
2
P ))(12)
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where Ā = ∆A+ I and σ̄2p = ∆2h(∆)σ2p. More generally the VAR(q) model
is prevalent in the literature (see Table 1), yet it does not explicitly han-
dle uneven sampling intervals. This is a potentially important issue since
uneven sampling is commonplace in global perturbation experiments, with
high frequency sampling used to capture short term cellular response and
low frequency sampling to capture the approach to equilibrium. We discuss
the importance of modeling using a variance function, and whether a natural
choice for such a function exists in Section 4 below. In addition we explored
whether inference may be improved through the use of either nonlinear ba-
sis functions or lagged predictors to capture respectively nonlinearity and
memory in the underlying drift function is unclear. Section 3 presents an
empirical investigation of these issues.

2.4. Inference. An appealing feature of the discrete time model is that
parameters corresponding to different variables are orthogonal in the Fisher
sense:

L(θ) =
P∏
p=1

L(Ap,•, σp)(13)

As a consequence network inference over G may be factorized into P inde-
pendent variable selection problems. For definiteness we focus on just two
approaches to variable selection, the Bayesian marginal likelihood and AIC,
but note that many other approaches are available, including those listed
in Table 1, and can be applied here in analogy to what follows. Below we
assume the response vector dyph

−1/2 and the columns of the design matrix
Bh−1/2 are standardized to have zero mean and unit variance, but for clarity
subsume this into unaltered notation.

2.4.1. Bayesian variable selection. For simplicity, the variance function
is initially taken to be constant (h = 1). We set up a Bayesian linear model
conditional on a network G using Zellner’s g-prior (Zellner, 1986), that is
with priors Ap,•|σ2p ∼ N(0, σ2pn(Bp

′Bp)
−1) and π(σ2p) ∝ 1/σ2p where Bp

is the design matrix B with non-predictors removed according to G. We
note that while the g-prior is a common choice, alternatives may offer some
advantages (Deltell, 2011; Friedman et al., 2000).

Let mp be the number of predictors for variable p in the network G. Inte-
grating the likelihood (induced by Eqn. 10) against the prior for (Ap,•, σ

2
p)

produces the following closed-form marginal likelihood

π(y|G) ∝
∏
p

(
1

1 + n

)mp/2 [
dy′pdyp −

(
n

1 + n

)
d̂y
′
pd̂yp

]−n/2
(14)
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where d̂yp = Bp(Bp
′Bp)

−1Bp
′dyp. These formulae extend to arbitrary vari-

ance functions h by substituting B 7→ Bh1/2, dy 7→ dyh1/2. Network in-
ference may now be carried out by Bayesian model averaging, using the
posterior probability of a directed edge from variable i to variable j:

P(i regulates j) =
∑
G

π(y|G)π(G)∑
G′ π(y|G′)π(G′)

I {(i, j) ∈ E(G)} .(15)

In experiments below, we take a network prior which, for each variable p
is uniform over the number of predictors mp up to a maximum permissible
in-degree dmax, that is π(G) ∝ ∏p

(
P
mp

)−1 I {mp ≤ dmax}, but note that

richer subjective network priors are available in the literature (Mukherjee
and Speed, 2008). Finally, a network estimator Ĝ is obtained by thresholding
posterior edge probabilities: (i, j) ∈ E(Ĝ)⇔ P(i regulates j) > ε. For small
maximum in-degree dmax, exact inference by enumeration of variable subsets
may be possible. Otherwise, Markov chain Monte Carlo (MCMC) methods
can be used to explore an effectively smaller model space (Ellis and Wong,
2008; Friedman and Koller, 2003). In the experiments below we use exact
inference by enumeration.

2.4.2. Variable selection by corrected AIC. Again, consider a constant
variance function (h = 1); rescaling as described above recovers the general
case. The usual maximum likelihood estimates Âp,• = (Bp

′Bp)
−1Bp

′dyp and

σ̂2p = 1
n

∑
j(dyp(tj)−d̂yp(tj))2 induce closed forms Cpσ̂

−n
p for the maximized

factors of the likelihood function, where Cp is a constant not depending on
the choice of predictors. Corrected AIC scores (Burnham and Anderson,
2002) for each variable p are then

AICc(p,G) = n log(σ̂2p) + 2mp +
2mp(mp + 1)

n−mp − 1
.(16)

Again we consider all models with maximum permissible in-degree dmax.
Lowest scoring models are chosen for each variable in turn, inducing a net-
work estimator Ĝ.

3. Results. In this Section, we present empirical results investigating
the performance of a number of network inference schemes that are special
cases of the general formulation described by Eqn. 10. Objective assessment
of network inference is challenging (Prill et al., 2010), since for most biologi-
cal applications the true data-generating network is unknown. We therefore
exploit two published dynamical models of biological processes, namely Can-
tone et al. (2009) and Swat et al. (2004), described in detail in Supplemen-
tal Information (SI; Oates and Mukherjee (2011)). The first is a synthetic
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gene regulatory network built in the yeast Saccharomyces cerevisiae. This
five gene network and associated delay differential equations (DDEs) has
received attention in computational biology (Camacho and Collins, 2009;
Minty et al., 2009), and has been shown to agree with gold-standard data
(at least under an E(f(FX)) ≈ f(FE(X)) assumption). Cantone et al. con-
sider two experimental conditions; “switch-on” and “switch-off”. In this pa-
per “switch-on” parameter values were used to generate data. The Swat
model is a gene-protein network governing the G1/S transition in mam-
malian cells. The model has a nine dimensional state vector and, unlike
Cantone, is Markovian. We note that this model has not been directly ver-
ified in the manner of Cantone but is based on a theoretical understanding
of cell cycle dynamics. There is undoubtedly bias from this essentially ar-
bitrary choice of dynamical systems but a comprehensive sampling of the
(vast) space of possible networks and dynamics is beyond the scope of this
paper.

3.1. Experimental procedure.

3.1.1. Simulation. We consider global perturbation data by initializing
the dynamical systems from out of equilibrium conditions. This is a common
setting for network inference approaches, but the limitations of inference
from such data remain incompletely understood. For each dynamical system
f , trajectories Xk of single cell expression levels were obtained as solutions to
the SDDE Eqn. 1 with drift f and uncorrelated diffusion g(X) = σcellD(X)
(representing multiplicative cellular noise). Trajectories were obtained by
numerically solving SDDEs with heterogeneous initial conditions using the
Euler-Maruyama discretization scheme (Eqn. 4). MATLAB R2010a code for
all simulation experiments is available in the SI. To mimic destructive sam-
pling and consequent nonlongitudinality, solutions were regenerated at each
time point. We are interested in data that are averages over a large num-
ber N of single-cell trajectories. However, the computational cost of solving
N × n SDDEs to produce each data set is prohibitive. Therefore, only a
smaller number N∗ << N of cells were simulated and a larger sample N
then obtained by bootstrapping, i.e. re-sampling from the N∗ trajectories
with replacement. In practice N∗ should be taken sufficiently large such that
a negligible change in experimental outcome results from further increase in
N∗. Initial conditions for single cell trajectories varied with standard de-
viation σcell. Finally, uncorrelated Gaussian noise of magnitude σmeas was
added to simulate a measurement process with additive error. In the exper-
iments presented below, N = 10, 000, N∗ = 30 and n = 20 time points are
taken within the dynamically interesting range (0-280 minutes for Cantone
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and 0-100 minutes for Swat). Measurement error and cellular noise are set
to give signal-to-noise ratios 〈X〉 /σmeas ≈ 10, 〈X〉 /σcell ≈ 10 (here 〈X〉 rep-
resents the average expression levels of the variables X over all generated
trajectories). Fig. 1 shows typical datasets for the two dynamical systems.

3.1.2. Inference schemes. The following inference schemes were assessed

Variable Selection { Bayesian, AICc }
Design matrix { Standard, Quadratic }
Lagged predictors { No, Yes }
Variance function h(∆) ∝ ∆−α α = { 0, 1, 2 , ∅ }

For the design matrix “quadratic” refers to the augmentation of the pre-
dictor set by the pairwise products of predictors, the simplest nonlinear
basis functions. For the variance function the symbol ∅ is used to denote the
VAR(q) model, which formally lacks a variance function. “Lagged predictors
= Yes” indicates augmentation of the predictor set with lagged observations
(a lag of ≈ 28 mins is used for Cantone and ≈ 10 mins for Swat). There
are heuristic justifications for each of the candidate variance functions. For
example the function with α = 2 appears for small ∆j when an exact Euler
approximation and additive measurement error are assumed (Bansal and
di Bernardo, 2007), whereas α = 1 is reminiscent of the Euler-Maruyama
discretization Eqn. 4.

3.1.3. Empirical assessment. The performance of each inference scheme
is quantified by the area under the receiver operating characteristic (ROC)
curve (AUR), averaged over 20 datasets (Fawcett, 2005). This metric, equiv-
alent to the probability that a randomly chosen true edge is preferred by
the inference scheme to a randomly chosen false edge, summarizes, across a
range of thresholds, the ability to select edges in the true data-generating
graph. Results presented below use a computationally favorable in-degree re-
striction dmax = 2. In order to check robustness to dmax all experiments were
repeated using dmax = 3, with no substantial changes in observed outcome
(SFig. 6).

3.2. Empirical results.

3.2.1. Even sampling interval. Fig. 2(a) displays box-plots over AUR
scores for the Cantone dynamical system under even sampling intervals.
Note that under even sampling, for an otherwise identical scheme, changing
variance function does not affect the model, leading to identical AUR scores
for schemes which differ only in variance function. (An exception to this is
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Fig 1. Two published dynamical systems models of cellular processes were used to generate
datasets. Single cell trajectories were generated from an SDDE model (Eqn. 1) and averaged
under measurement noise and nonlongitudinality due to destructive sampling. (a) Data
generated from (a model due to) Cantone et al. (2009), describing a synthetic network
built in yeast. (b) Data generated from Swat et al. (2004), a theory-driven model of the
G1/S transition in mammalian cells.

the VAR model, since the parameters A carry a subtly different meaning,
which under a Bayesian formulation leads to a translation of the prior dis-
tribution and in the information criteria case changes the definition of the
predictor set.)

Despite the presence of nonlinearities and memory in the cellular drift f ,
neither the use of quadratic basis functions nor the inclusion of lagged pre-
dictors appear to improve performance in terms of AUR. In order to verify
that quadratic predictors are sufficiently nonlinear and that lagged predic-
tors are sufficiently delayed, we repeated the investigation using both cubic
predictors and using a delay twice as long. Results (SFigs. 3,4) demonstrate
that no improvement to the AUR scores is achieved in this way.
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(a) Cantone et al. (2009), even sampling times.
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(b) Cantone et al. (2009), uneven sampling times.

Fig 2. An empirical comparison of network inference schemes. Simulated experiments
based on published dynamical systems allow benchmarking of performance in terms of area
under ROC curves (AUR; higher scores correspond to better network inference perfor-
mance). (a) Even sampling intervals. (b) Uneven sampling intervals.
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Fig 3. Investigation of empirical consistency of network estimators, using the Cantone et
al. (2009) model with even sampling intervals. Area under ROC curves are shown in the
large dataset, zero cellular heterogeneity and zero measurement noise limits.

Corresponding results for the Swat model are shown in SFig. 2. Here we
find that none of the methods performs well.

We also performed inference using biochemical data from the experimen-
tal system reported in Cantone et al. (2009) (specifically the “switch-on”
dataset therein). AUR scores obtained using this data (SFig. 5) were in close
agreement with those obtained using synthetic data (Fig. 2(a)), suggesting
that the results of the simulations are relevant to real world studies.

3.2.2. Uneven sampling intervals. Many biological time-course experi-
ments are carried out with uneven sampling intervals. We therefore repeated
the analysis above with sampling times of 0, 1, 5, 10, 15, 20, 30, 40, 50, 60,
75, 90, 105, 120, 140, 160, 180, 210, 240 and 280 minutes. Fig. 2(b) displays
the AUR scores so obtained. We find that all the methods perform worse in
the uneven sampling regime, with no method performing significantly better
than random. Corresponding results for the Swat model are shown in SFig.
7. Again, here we find that none of the methods performs well.
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3.2.3. Consistency. Fig. 3 displays AUR scores for Cantone for a large
number of evenly sampled time points (n = 100), and the limiting case of
zero measurement noise and zero cellular heterogeneity (σmeas = 0, σcell = 0,
even sampling intervals). Consistency (in the sense of asymptotic conver-
gence of the network estimate to the data-generating network) may be
unattainable due to the nonidentifiability resulting from limited exploration
of the dynamical phase space. This lack of surjectivity means that in many
cases inference cannot possibly reveal the full data-generating graph, al-
though as we have seen network inference can nonetheless be informative.
From Fig. 3 we see that the Bayesian schemes using linear predictors ap-
proach AUR equal to unity, and in this sense show empirical consistency
with respect to network inference. However, some of the other methods do
not converge to the correct graph even in this limit.

4. Discussion. The analyses presented here were aimed at better un-
derstanding statistical network inference for biological applications. We showed
how a broad class of approaches, including VAR models, linear DBNs and
certain ODE-based approaches, are related to stochastic dynamics at the
cellular level. We discuss a number of these aspects below and close with
some views on future perspectives for network inference, including recom-
mendations for practitioners.

4.1. Time intervals. We found that uneven sampling intervals posed
problems, even for methods that explicitly accounted for the sampling in-
terval. Further insight may be gained from a “propagation of uncertainty”
analysis of the approximations indicated in Section 2.2. Assuming the true
large sample process obeys dX∞/dt = F(X∞), we have that under an ob-
servation process with independent additive Gaussian measurement error
Y(t) ∼ N(X∞(t),M) an expansion for the variance V(dY − F(Y)) over a
time interval ∆ is given by

M∆−2 + (I∆−1 +DF)M(I∆−1 +DF)′ + . . .(17)

(see SI for details). Recall that the model family in Eqn. 10 approximates this
variance by h(∆)D(σ21, . . . , σ

2
P ) where h(∆) = ∆−α. From this perspective

it is clear that each variance function we considered captures only partial
variation due to ∆. It is therefore not surprising that performance suffers in
the uneven sampling regime, which requires the variance function to apply
equally to large ∆ as to small ∆. Moreover, a natural choice of variance
function driven by Eqn. 17 is not possible, since this would require knowledge
of the unknown process F. The implication for experimental design is that
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absent specific reasons for uneven sampling, it may be preferable to collect
data at regular intervals.
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Fig 4. Variance functions used in literature provide partial approximation to the “true”
functional form for Cantone et al. (2009). For small time steps a power law ∆−α provides
a good approximation, but for larger time steps a constant variance function may be more
appropriate. In practice the precise form of htrue will be unknown.

Fig. 4 displays an approximation to the true variance function for the
Cantone model (see SI). Observe that for small sampling intervals ∆ the
true curvature is best captured by a functional approximation of the form
h(∆) ∝ ∆−α with α = 1, 2, whereas for intervals larger than 10 mins (which
are more common in practice) the flat approximation h(∆) ∝ 1 correctly
captures the asymptotic behavior. In applications where high frequency sam-
pling is infeasible the flat variance function might be a sensible choice. To
understand whether difficulties related to sampling intervals disappear in
the large sample limit, we repeated the empirical consistency analysis under
uneven sampling (SFigs. 11,12). Interestingly, we found that none of the
methods appeared to be empirically consistent, and that the choice of vari-
ance function is influential. However, unevenly sampled data are common
in biology and it may be the case that in some settings, the existence of
multiple time scales (e.g. signaling, transcription, accumulating epigenetic
alterations) mean that unevenly sampled data are nonetheless useful. Our
findings suggest that care should be taken in the uneven sampling regime.

4.2. Interventional data. The Cantone data are favorable in the sense
that gene profiles show interesting time-varying behavior under global per-
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turbation, exploring a large proportion of the dynamical phase space. How-
ever such behavior is dependent on the specific dynamical system and is not
displayed by the Swat model, which has a much larger phase space, being
a nine-dimensional dynamical system. This may help explain the poor per-
formance of all the methods on this latter model using global perturbation
data and perhaps reinforces the intuitive notion that dynamics that are fa-
vorable (in this informal sense) facilitate network inference. In some cases,
perturbation data are available in which individual variables are inhibited
(e.g. by RNA interference, gene knockouts or inhibitor treatments). Such
data have the potential to explore much more of the dynamical phase space,
including regions which cannot be accessed without direct inhibition of spe-
cific molecular components. This is an important consideration because the
statistical estimators described in Section 2.4 take the form

Â = 〈Df(FX)〉X∈R(18)

where the average is over the region R ⊆ X in state space visited during
the experiments. Clearly if the region (f(FR),R) is only a small subspace of
phase space then the estimate Eqn. 18 will be poor compared to one based
on the entire phase space Â∗ = 〈Df(FX)〉X∈X .

To investigate the added value of interventional treatments for network
inference, we repeated both the Cantone and Swat analyses with an ensem-
ble of datasets obtained by inhibiting each variable in turn; this gave 5 and
9 datasets for Cantone and Swat respectively. Whilst no improvement to
the Cantone AUR scores was observed (SFig. 15), there was improved per-
formance for Swat (SFig. 16). This suggests that global perturbations are
insufficient to explore the Swat dynamical phase space, and supports the
intuitive notion that intervention experiments may be essential for infer-
ence regarding larger dynamical systems. Nevertheless AUR scores remain
far from unity. This may be because the Swat drift function contains com-
plex interaction terms which single interventions alone fail to elucidate. An
important problem in experimental design will be to estimate how much
(possibly combinatorial) intervention is required to achieve a certain level of
network inference performance.

We considered precise artificial intervention of single components in silico.
However, biological interventions may be imprecise and imperfect. For ex-
ample, RNA interference achieves only incomplete silencing of the target and
small-molecule inhibitors may have off-target effects. Moreover, at present
such interventions are not instantaneous nor truly exogenous. This means
that in many cases the system itself may be changed by the intervention,
rendering resulting predictions inaccurate for the native system of interest.
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There remains a need for novel statistical methodology capable of analyzing
time-course data under biological interventions. Existing literature in causal
inference (Pearl, 2009) and related work in graphical models (Eaton and
Murphy, 2007) are relevant, but in biological applications it may also be
important to consider the mechanism of action of specific interventions.

4.3. Non-linear models. We focused on linear statistical models. Clearly,
linear models are inadequate in many cases. For example Rogers et al. (2007)
demonstrate the benefit of a nonlinear model based on Michaelis-Menten
chemical kinetics for inference of transcription factor activity. However, net-
work inference based on nonlinear ODEs remains challenging (Xu et al.,
2010). Alternatively Äijö and Lähdesmäki (2009) consider the use of a non-
parametric Gaussian process (GP) interaction term in the regression, which
is naturally more flexible than linear regression using finitely many basis
functions. This may help to overcome the linearity restriction, but intro-
duces additional degrees of freedom, including the GP covariance function
and associated hyperparameters. Whilst a thorough comparison of such ap-
proaches was beyond the scope of this article, the potential utility of non-
parametric interaction terms is worthy of investigation. In this study we
observed that neither the use of predictor products nor lagged predictors
led to improved performance; this may reflect nontrivial coupling between
cellular dynamics and the observed data.

4.4. Single-cell data. In the future it may become possible to measure
single cell expression levels Xk non-destructively (e.g. by live cell imag-
ing), producing truly longitudinal datasets. It is interesting to consider
how such data may impact upon the performance of regression-based net-
work inference. Under independent additive Gaussian measurement error
Y(t) ∼ N(Xk(t),M) an expansion for the single cell variance V(dY − f)
over a time interval ∆, in analogy with Eqn. 17, is given by

M∆−2 + (I∆−1 +DF)M(I∆−1 +DF)′ + ∆−1gg′ + . . .(19)

(see SI). Thus a (single) longitudinal single cell dataset contains less in-
formation about the drift f than aggregate data (Eqn. 17) due to cellular
stochasticity g. However, multiple longitudinal datasets may jointly contain
more information than a single aggregate dataset. To empirically test the
utility of such data, we carried out network inference using 10 such longitu-
dinal single-cell datasets on both the Cantone and Swat models, observed at
even intervals with the same magnitude of measurement error as aggregate
data. Results (SFig. 13,14) show a small improvement to the mean AUR
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scores, but reduction by a factor of about two in the variance of these scores
(compared with the corresponding non-longitudinal data), implying that the
network estimators may be converging to an incorrect network. Bias may
occur when the cellular drift f is not well approximated by a linear function,
as is the case for the Swat model. Consider the idealized scenario where
f ≡ f(X) is Markovian and it is possible to observe longitudinal, single cell
expression levels. Under these apparently favorable circumstances even es-
timators obtained after a thorough exploration of state space may not offer
good approximations, i.e. Â∗ 6≈ Df |x=0. As a toy example consider the
cellular drift

f : [0, 1]2 → R, f(X) =

(
(2π)−1sin(2πX2)
(2π)−1sin(2πX1)

)
(20)

which is not well approximated by a linear function over the state space
X = [0, 1]2. In this case averaging leads to cancellation

Â∗ = 〈Df(X)〉X∈X =

〈(
0 cos(2πX2)

cos(2πX1) 0

)〉
X∈[0,1]2

(21)

= 0 6=
(

0 1
1 0

)
= Df |x=0

so that no interactions are inferred. Under such circumstances network in-
ference is no longer possible using the näıve linear regression approach. This
suggests that network inference rooted in non-linear models may be needed
to fully exploit longitudinal single-cell data in the future. A related line of
work addresses heterogeneity of the drift function in time by coupling DBNs
with change point processes (Grzegorczyk and Husmeier, 2010; Kolar et al.,
2009; Lèbre et al., , 2010). A promising direction would be piecewise linear
regression modeling for network inference applications, where the hetero-
geneity appears in the spatial domain.

4.5. High-dimensions and missing variables. We focused on the simplest
possible case of fully observed, low-dimensional systems. There is a rich lit-
erature in high-dimensional variable selection and related graphical mod-
els (Meinshausen and Bühlmann, 2006; Hans et al., 2007; Friedman et al.,
2008) which applies equally to the regression models described here. The
issues raised in this paper remain relevant in the high-dimensional setting.
However in practice even high-dimensional observations are likely to be in-
complete, since it is not currently possible to measure all relevant chemical
species. Therefore, inferred relationships between variables may be indirect.
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This may be acceptable for the purpose of predicting the outcome of bio-
chemical interventions (e.g. inhibiting gene or protein nodes), but limits
stronger causal or mechanistic interpretations. Latent variable approaches
are available (Beal et al., 2005), but model selection can be challenging and
remains an open area of research (Knowles and Ghahramani, 2011). We note
also that the missing variable issue for biological networks is arguably more
severe than in, say, economics or epidemiology, insofar as measured variables
may represent only a small fraction of the true state vector, often with little
specific insight available into the nature of the missing variables or their
relationship to observations. Further work is required to better understand
these issues in the context of inference for biological networks.

4.6. Future perspectives. We found that a simple linear model could suc-
cessfully infer network structure using globally perturbed time-course data
from the Cantone system. It is encouraging that inference based only on as-
sociations between variables, none of which were explicitly intervened upon,
can in some cases be effective. Interventional designs should further enhance
prospects for network inference. On the other hand, theoretical arguments,
and the results we showed from the Swat system, emphasize that in some
cases network structure may not be identifiable, even at the coarse level re-
quired for qualitative biological prediction. On balance, we believe that net-
work inference can be useful in generating biological hypotheses and guiding
further experiment. However, the concerns we raise motivate a need for cau-
tion in statistical analysis and interpretation of results. At the present time,
we do not believe network inference should be treated as a routine analysis
in bioinformatics applications, but rather as an open research area that may,
in future, yield standard experimental and statistical protocols.

Some specific recommendations that arise from the results presented here
are:

• A default model. Our results suggest that a reasonable default choice
of model for typical applications uses the standard design matrix with
no lagged predictors and a flat variance function, corresponding to the
linear model

dY(tj) ∼ N(AY(tj−1),D(σ21, . . . , σ
2
P )).(22)

Coupled with the Bayesian variable selection scheme outlined in Sec-
tion 2.4.1, this simple model produced empirically consistent network
estimators for Cantone using evenly sampled global perturbation data
(Fig. 3).
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• Diagnostics and validation. It is clear that network inference does not
enjoy general theoretical guarantees and that the ability to successfully
elucidate network structure depends on details of the specific system
under study. Therefore careful empirical validation on a case-by-case
basis is essential. This should include statistical assessment of model
fit, robustness and predictive ability and where possible systematic
validation using independent interventional data.
• Experimental design. We suggest sampling evenly in time as a de-

fault choice. Interventional designs may be helpful to effectively ex-
plore larger dynamical phase spaces. However, to control the burden
of experimentally exploring multiple time points, molecular species,
interventions, culture conditions and biological samples, adaptive de-
signs that prune experiments based on informativeness for the specific
biological setting may be helpful (Xu et al., 2010).

In conclusion, linear statistical models for networks are closely related
to models of cellular dynamics and can shed light on patterns of biochem-
ical regulation. However, biological network inference remains profoundly
challenging, and in some cases may not be possible even in principle. Nev-
ertheless, studies aimed at elucidating networks from high-throughput data
are now commonplace and play a prominent role in biology. For this reason
there remains an urgent need for both new methodology and theoretical
and empirical investigation of existing approaches. Furthermore, there re-
main many open questions in experimental design and analysis of designed
experiments in this setting.
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