# The Library

### S-integral points on hyperelliptic curves

Tools

Gallegos-Ruiz, Homero R..
(2011)
*S-integral points on hyperelliptic curves.*
International Journal of Number Theory, Volume 7
(Number 3).
p. 803.
ISSN 1793-0421

**Full text not available from this repository.**

Official URL: http://dx.doi.org/10.1142/S1793042111004435

## Abstract

Let C : Y(2) = a(n)X(n) + ... + a(0) be a hyperelliptic curve with the a(i) rational integers, n >= 5, and the polynomial on the right irreducible. Let J be its Jacobian. Let S be a finite set of rational primes. We give a completely explicit upper bound for the size of the S-integral points on the model C, provided we know at least one rational point on C and a Mordell-Weil basis for J(Q). We use a refinement of the Mordell-Weil sieve which, combined with the upper bound, is capable of determining all the S-integral points. The method is illustrated by determining the S-integral points on the genus 2 hyperelliptic model Y(2) - Y = X(5) - X for the set S of the first 22 primes.

Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics |

Divisions: | Faculty of Science > Mathematics |

Library of Congress Subject Headings (LCSH): | Curves, Integrals, Hyperelliptic |

Journal or Publication Title: | International Journal of Number Theory |

Publisher: | World Scientific Publishing Co. Pte. Ltd. |

ISSN: | 1793-0421 |

Date: | 2011 |

Volume: | Volume 7 |

Number: | Number 3 |

Page Range: | p. 803 |

Identification Number: | 10.1142/S1793042111004435 |

Status: | Peer Reviewed |

Publication Status: | Published |

Funder: | Consejo Nacional de Ciencia y Tecnología (Mexico) [Mexican Council for Science and Technology] (CONACYT) |

Grant number: | 160194 (CONACYT) |

References: | [1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Math. Proc. Cambridge Philos. Soc. 65 (1969) 439–444. [2] Y. Bilu, Effective analysis of integral points on algebraic curves, Israel J. Math. 90(1–3) (1995) 235–252. [3] Y. F. Bilu, Quantitative Siegel’s theorem for Galois coverings, Compositio Math. 106(2) (1997) 125–158. [4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265. [5] N. Bruin and N. D. Elkies, Trinomials ax7+bx+c and ax8+bx+c with Galois groups of order 168 and 8 · 168, in Algorithmic Number Theory, Lecture Notes in Computer Science, Vol. 2369 (Springer, Berlin, 2002), pp. 172–188. [6] N. Bruin and M. Stoll, The Mordell–Weil sieve: Proving the non-existence of rational points on curves, in preparation. [7] N. Bruin and M. Stoll, Deciding existence of rational points on curves: An experiment, Experiment. Math. 17(2) (2008) 181–189. [8] Y. Bugeaud, Bounds for the solutions of superelliptic equations, Compos. Math. 107 (1997) 187–219. [9] Y. Bugeaud and K. Gy˝ory, Bounds for the solutions of unit equations, Acta Arith. 74(1) (1996) 67–80. [10] ———, Bounds for the solutions of Thue–Mahler equations and norm form equations, Acta Arith. 74(3) (1996) 273–292. [11] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll and S. Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2(8) (2008) 859–885. [12] K. Gy˝ory and K. Yu, Bounds for the solutions of S-unit equations and decomposable form equations, Acta Arith. 123(1) (2006) 9–41. [13] E. Landau, Verallgemeinerung eines P´olyaschen Satzes auf algebraische Zahlk¨orper, Nachr. Gesellschaft Wiss. G¨ottingen Math.-Phys. Kl. 1918 (1918) 478–488. [14] H. W. Lenstra Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. 26(2) (1992) 211–244. [15] E. M. Matveev, An explicit lower bound for a homogeneous rational form in logarithms of algebraic numbers. II, Izv. Ross. Acad. Nauk Ser. Mat. 64(6) (2000) 125–180 (Russian); Izv. Math. 64(6) (2000) 1217–1269 (English). [16] D. Poulakis, Solutions enti`eres de l’´equation Y m = f(X), S´em. Th´eor. Nombres Bordeaux (2) 3(1) (1991) 187–199. [17] V. G. Sprindˇzuk, The arithmetic structure of integer polynomials and class numbers, Trudy Mat. Inst. Steklov. 143 (1977) 152–174, 210; Analytic number theory, mathematical analysis and their applications (dedicated to I. M. Vinogradov on his 85th birthday). [18] L. A. Trelina, S-integral solutions of Diophantine equations of hyperbolic type, Dokl. Akad. Nauk BSSR 22(10) (1978) 881–884, 955. [19] P. M. Voutier, An upper bound for the size of integral solutions to ym = f(x), J. Number Theory 53(2) (1995) 247–271. [20] P. M. Voutier, An effective lower bound for the height of algebraic numbers, Acta Arith. 74(1) (1996) 81–95. [21] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups: Transcendence Properties of the Exponential Function in Several Variables, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 326 (Springer-Verlag, Berlin, 2000). [22] K. Yu, p-adic logarithmic forms and group varieties. III, Forum Math. 19(2) (2007) 187–280. |

URI: | http://wrap.warwick.ac.uk/id/eprint/41337 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |