# The Library

### Will climate change mathematics (?)

Tools

Jones, C. K. R. T. (Christopher K. R. T.).
(2011)
*Will climate change mathematics (?).*
IMA Journal of Applied Mathematics, Volume 76
(Number 3).
pp. 353-370.
ISSN 0272-4960

**Full text not available from this repository.**

Official URL: http://dx.doi.org/10.1093/imamat/hxr018

## Abstract

Since the Earth itself is not available for experimentation, climate science relies on mathematical models to make up its 'laboratory'. Despite this, the (applied) mathematical community has not seriously engaged itself in climate research. I argue that the urgency of addressing climate change will change this over the coming decade and suggest some ways that mathematics might evolve in response.

[error in script] [error in script]Item Type: | Journal Article |
---|---|

Subjects: | Q Science > QA Mathematics |

Divisions: | Faculty of Science > Mathematics |

Library of Congress Subject Headings (LCSH): | Climatic changes -- Mathematical models |

Journal or Publication Title: | IMA Journal of Applied Mathematics |

Publisher: | Oxford University Press |

ISSN: | 0272-4960 |

Date: | 2011 |

Volume: | Volume 76 |

Number: | Number 3 |

Page Range: | pp. 353-370 |

Identification Number: | 10.1093/imamat/hxr018 |

Status: | Peer Reviewed |

Publication Status: | Published |

Funder: | National Science Foundation (U.S.) (NSF), Royal Society (Great Britain), United States. Office of Naval Research |

Grant number: | DMS-0940363 (NSF), N00014-05-1-0791 (ONR) |

References: | APTE, A., STUART, A. M. & JONES, C. (2008a) A Bayesian approach to Lagrangian data assimilation. Tellus A, 60, 336–347. APTE, A., STUART, A. M., VOSS, J. & JONES, C. (2008b) Data assimilation: mathematical and statistical perspectives. Int. J. Numer. Methods Fluids, 56, 1033–1046. ARCHER, D. (2007) Global Warming: Understanding the Forecast. Oxford: Blackwell. ARCHER, D. & RAHMSTORF, S. (2009) The Climate Crisis: An Introductory Guide to Climate Change. Cambridge: Cambridge University Press. BARKMEIJER, J., IVERSEN, T. & PALMER, T. N. (2005) Forcing singular vectors and other sensitive model structures. Q. J. R. Meteorological Soc., 129, 2401–2423. BJERKNES, J. (1965) Atmosphere-ocean interaction during the ‘Little Ice Age’. WMO-IUGG Symposium on Research and Development Aspects of Long-Range Forecasting WMO-162. TP. 79. Technical Note No. 66. pp. 77–88. DAVIDSON, O. & METZ, B. (2000) IPCC Special Report on Emissions Scenarios. Available at http://www.ipcc.ch/ pdf/special-reports/spm/sres-en.pdf. DIJKSTRA, H. (2008) Dynamical Oceanography. Berlin: Springer. EVENSEN, G. (2006) Data Assimilation: The Ensemble Kalman Filter. Heidelberg: Springer. GENT, P. (2006) Preface to special issue on community climate system model (CCSM). J. Clim., 19, 2121–2121. GILL, A. E. (1982) Atmosphere-Ocean Dynamics. San Diego, CA: Academic Press. GOLDSTEIN, M. & ROUGIER, J. C. (2009) Reified Bayesian modelling and inference for physical systems. J. Stat. Plan. Inference, 139, 1221–1239. HAIRER, M., STUART, A. M. & VOSS, J. (2011) Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods. The Oxford Handbook of Nonlinear Filtering (D. Crisan & B. Rozovsky eds). Oxford: Oxford University Press, pp. 833–873. HUYBERS, P. (2010) Compensation between model feedbacks and curtailment of climate sensitivity. J. Clim., 23, 3009–3018. IDE. K. (2009) Mathematical advances in data assimilation: special collection. Mon. Weather Rev., 137–138. IDE, K. & JONES C. (eds) (2007) Data assimilation: special issue. Physica D, 230. KALNAY, E. (2003) Atmospheric Modeling, Data Assimilation and Predictability. Cambridge: Cambridge University Press. KENNEDY, M. & O’HAGAN, A. (2001) Bayesian calibration of computer models (with discussion). J. R. Stat. Soc. Ser. B, 63, 425–464. KUZNETSOV, L., IDE, K. & JONES, C. (2003) A method for assimilation of Lagrangian data. Mon. Weather Rev., 131, 2247–2260. MARSHALL, J. & PLUMB, R. A. (2008) Atmosphere, Ocean, and Climate Dynamics. London: Elsevier Academic Press. NYCHKA, D. & ANDERSON, J. L. (2010) Data assimilation. Handbook of Spatial Statistics (Gelfand, A. E., Diggle, P., Guttorp, P. & Fuentes, M. eds). Boca Raton, FL: CRC Press, pp. 477–494. PEDLOSKY, J. (1987) Geophysical Fluid Dynamics, 2nd edn. New York: Springer. RODWELL, M. J. & PALMER, T. N. (2007) Using numerical weather prediction to assess climate models. Q. J. R. Meteorological Soc., 133, 129–146. SALMAN, H. (2008) A hybrid grid/particle filter for Lagrangian data assimilation. Part I: formulating the passive scalar approximation and part II: application to a model vortex flow. Q. J. R. Meteorological Soc., 134, 1539–1565. SALMAN, H., IDE, K. & JONES, C. (2008) Using flow geometry for drifter deployment in Lagrangian data assimilation. Tellus A, 60, 321–335. SALMAN, H., KUZNETSOV, L., IDE, K. & JONES, C. (2006) A method for assimilating Lagrangian data into a shallow-water equation ocean model. Mon. Weather Rev. 134, 1081–1101. SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K. B., TIGNOR, M. & MILLER, H. L. (eds) (2007) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. STAINFORTH, D. A., AINA, T., CHRISTENSEN, C., COLLINS, M., FAULL, N., FRAME, D. J., KETTLEBOROUGH, J. A., KNIGHT, S., MARTIN, A., MURPHY, J. M., PIANI, C., SEXTON, D., SMITH, L. A., SPICER, R. A., THORPE, A. J. & ALLEN, M. R. (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403–406. TREMLETT, G. (2009) New weapon Against Climate Change on Verge of Completing First Transatlantic Voyage. London: The Gurdian. VAN DER SCHRIER, G. & BARKMEIJER, J. (2005) Bjerknes’ hypothesis on the coldness during AD 1790–1820 revisited. Clim. Dyn., 24, 355–371. VAN LEEUWEN, P. J. (2010) Nonlinear data assimilation in geosciences: an extremely efficient particle filter. Q. J. R. Meteorological Soc., Part B 136, 1991–1999. VERNIERES, G., IDE, K. & JONES, C. (2011) Capturing eddy shedding in the Gulf of Mexico from Lagrangian observations. Physica D., 240, 166–179. WIDMANN, M., GOOSSE, H., VAN DER SCHRIER, G., SCHNUR, R., & BARKMEIJER, J. (2010) Using data assimilation to study extratropical Northern Hemisphere climate over the past millennium. Clim. Past, 6, 627–644. WUNSCH, C. (1996) The Ocean Circulation Inverse Problem. Cambridge: Cambridge University Press. |

URI: | http://wrap.warwick.ac.uk/id/eprint/41338 |

Data sourced from Thomson Reuters' Web of Knowledge

### Actions (login required)

View Item |