A Study of the Preparation and Reactions of Titanium (IV) Carboxylates

by

Timothy Frank Illson

A thesis submitted as part requirement for the degree of Doctor of Philosophy of the University of Warwick.

The work herein reported was carried out between October 1984 and September 1987 in the Department of Chemistry.

September 1988
CONTENTS

CHAPTER 1

Introduction 1
Ziegler-Natta Type Olefin Polymerisation Catalysts 3
Supported Catalysts 6
The Mechanism of Ziegler-Natta Catalysis 9
Stereospecificity in Ziegler-Natta Polymerisation 12
Titanium Carboxylates and Polymerisation 15
Carboxylic Acids and Metal Carboxylates 15
Carboxylate Co-ordination Modes 18
Oligomeric Metal Carboxylates 23
Identification of Carboxylate Bonding Mode 25
General Titanium Chemistry 27
Low Valent Titanium Complexes 27
Titanium (III) 28
Titanium (IV) 29
Titanium (III) Carboxylates 35
Titanium (IV) Carboxylates 41

CHAPTER 2

The Preparation and Reactions of Titanium (IV) Tris(chloro)mono(carboxylate) Complexes
Previous Syntheses of Titanium Carboxylates 48
Reactions of Titanium (IV) Carboxylates 52
I General Preparative Methods for Titanium (IV) monocarboxylates 53
II Preparation of Titanium (IV) Tris(chloro)mono(carboxylates) 55
III Reactions of Titanium (IV) Tris(chloro)mono(carboxylates) 81
Conclusions 93

CHAPTER 3

Structure and Spectral Properties of TiCl₃[(CH₃)₃CCO₂] 94
Introduction 96
Solid State Infra-red Spectrum of TiCl₃[(CH₃)₃CCO₂] 96
¹H NMR Spectrum of TiCl₃[(CH₃)₃CCO₂] 96
Variable Temperature ¹H NMR of TiCl₃[(CH₃)₃CCO₂] 100
¹H NMR Decoupling Experiments 100
¹³C NMR of TiCl₃[(CH₃)₃CCO₂] 101
Electron Impact Mass Spectrum of TiCl₃[(CH₃)₃CCO₂] 103
Cryoscopic Molecular Weight Measurements on TiCl₃[(CH₃)₃CCO₂] 104
Molecular Structure of TiCl₃[(CH₃)₃CCO₂] 104
Discussion 111
Conclusions 119
<table>
<thead>
<tr>
<th>CHAPTER 4</th>
<th>Hydrolysis Reactions of TiCl₃(RCO₂) Complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>120</td>
</tr>
<tr>
<td>Preparation of Titanium Oxo-Compounds</td>
<td>126</td>
</tr>
<tr>
<td>17O NMR Studies of [TiCl₂(RCO₂)EtOAc]₂</td>
<td>128</td>
</tr>
<tr>
<td>17O NMR Spectra of the 1:10 (H₂O/Ti) Hydrolysis Product</td>
<td>136</td>
</tr>
<tr>
<td>Cyclic Voltammetry</td>
<td>137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 5</th>
<th>Titanium - Magnesium Complexes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>141</td>
</tr>
<tr>
<td>Preparation and Properties of Bimetallic Titanium-Magnesium Complexes</td>
<td>145</td>
</tr>
<tr>
<td>Discussion</td>
<td>148</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CHAPTER 6</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purification and drying of reagents and solvents</td>
<td>150</td>
</tr>
<tr>
<td>Preparation and Reactions of Titanium (IV) Trischloromonocarboxylates</td>
<td>152</td>
</tr>
<tr>
<td>Hydrolysis Reactions of Titanium (IV) Monocarboxylates</td>
<td>175</td>
</tr>
<tr>
<td>Titanium-Magnesium Complexes</td>
<td>179</td>
</tr>
<tr>
<td>X-ray Crystallography</td>
<td>183</td>
</tr>
<tr>
<td>Molecular Weights</td>
<td>184</td>
</tr>
<tr>
<td>Analytical Techniques</td>
<td>186</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>188</td>
</tr>
</tbody>
</table>

Appendix 1 | 189 |
References | 193 |
TABLES

CHAPTER 1

Table 1.1 Catalyst Activities 7
Table 1.2 Titanium Carboxylates as Polymerisation Catalysts 16
Table 1.3 Adducts of Titanium Tetrachloride of the type TiCl₄.2L 31
Table 1.4 Adducts of Titanium Tetrachloride of the type TiCl₄.L 31
Table 1.5 Adducts of Titanium Tetrachloride with bidentate ligands 31
Table 1.6 Properties of Cp₂Ti(O₂CR) Species 38

CHAPTER 2

Table 2.1 Infra-red data for the carboxylate stretching region of α,β-
unsaturated carboxylates 69
Table 2.2 Bond lengths (Å) 77
Table 2.3 Bond angles (deg) 77
Table 2.4 Variation of molecular mass with concentration for
Ti(OPr)₃(C₆H₅CO₂) 80
Table 2.5 Reactions of TiCl₃(RCO₂) species with acetylacetone 88
Table 2.6 Infra-red spectra of TiCl₃(RCO₂) 92

CHAPTER 3

Table 3.1 Infra-red Spectrum of TiCl₃[(CH₃)₃CCO₂] 98
Table 3.2 Mass Spectrum of TiCl₃[(CH₃)₃CCO₂] 105
Table 3.3 Bond lengths (Å) 107
Table 3.4 Bond angles (deg) 108
Table 3.5 Angles between terminal chlorines 110

CHAPTER 4

Table 4.1 ¹⁷O NMR Spectral Data for [TiCl₂(RCO₂)EtOAc]₂O
in EtOAc 130
Table 4.2 ¹⁷O NMR Spectral Data for the 1:10 (H₂O/Ti) Hydrolysis 138
FIGURES

CHAPTER 1

<table>
<thead>
<tr>
<th>Figure/Structure</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>The structure of TiMgCl$_5$(O_2CCH$_2$Cl)(ClCH$_2$COOC$_2$H$_5$)$_3$</td>
<td>2</td>
</tr>
<tr>
<td>Forms of Polypropylene</td>
<td>3</td>
</tr>
<tr>
<td>Isotactic, Atactic and Syndiotactic Polypropylene</td>
<td>4</td>
</tr>
<tr>
<td>The structure of MgCl$_2$.TiCl$_4$.EtOAc</td>
<td>8</td>
</tr>
<tr>
<td>The structure of TiMgCl$_5$(ClCH$_2$CO$_2$)(ClCH$_2$COOC$_2$H$_5$)$_3$</td>
<td>9</td>
</tr>
<tr>
<td>The Natta mechanism</td>
<td>11</td>
</tr>
<tr>
<td>Figure 1.1: The Cossee and Arlman mechanism</td>
<td>14</td>
</tr>
<tr>
<td>A Carboxylic Acid</td>
<td>15</td>
</tr>
<tr>
<td>Carboxylic acid cyclic dimer</td>
<td>17</td>
</tr>
<tr>
<td>Carboxylic acid open dimer</td>
<td>17</td>
</tr>
<tr>
<td>Carboxylate Coordination types</td>
<td></td>
</tr>
<tr>
<td>(i) Ionic</td>
<td>19</td>
</tr>
<tr>
<td>(i) Unidentate</td>
<td>19</td>
</tr>
<tr>
<td>(iii) Bidentate chelating</td>
<td>20</td>
</tr>
<tr>
<td>(iv) Bidentate bridging</td>
<td>21</td>
</tr>
<tr>
<td>Syn-Syn</td>
<td></td>
</tr>
<tr>
<td>Anti-Syn</td>
<td>22</td>
</tr>
<tr>
<td>Anti-Anti</td>
<td>22</td>
</tr>
<tr>
<td>Monatomic</td>
<td>22</td>
</tr>
<tr>
<td>Structure of M$_2$(O$_2$CR)$_4$ species</td>
<td>23</td>
</tr>
<tr>
<td>Trimeric M(III) carboxylates structure</td>
<td>24</td>
</tr>
<tr>
<td>Structure of [Zn$_3$(CH$_3$CH=CHCO$_2$)$_6$(C$_9$H$_7$N)$_2$]</td>
<td>24</td>
</tr>
<tr>
<td>Structure of TiCl$_4$.B adducts</td>
<td>32</td>
</tr>
<tr>
<td>Structure of TiCl$_4$.EtOAc</td>
<td>32</td>
</tr>
<tr>
<td>Structure of Titanium Tetraethoxide</td>
<td>34</td>
</tr>
<tr>
<td>Structure of TiX$_2$C$_2$P$_2$ complexes</td>
<td>35</td>
</tr>
<tr>
<td>Structure of [CpTi(O$_2$CC$_6$H$_5$)$_2$]</td>
<td>36</td>
</tr>
<tr>
<td>Cp$_2$Ti(O$_2$CR) compounds</td>
<td>37</td>
</tr>
<tr>
<td>The Structure of Ti$_2$(C$_2$O$_4$)$_3$.10H$_2$O</td>
<td>40</td>
</tr>
<tr>
<td>Structures of Cp$_2$Ti(O$_2$CR)$_2$ complexes</td>
<td>42</td>
</tr>
<tr>
<td>Ti-O II bonding</td>
<td>42</td>
</tr>
<tr>
<td>Proposed structure of TiX$_2$(O$_2$CR)$_2$ species</td>
<td>44</td>
</tr>
<tr>
<td>Proposed structure of TiCl$_3$(CH$_3$CO$_2$)</td>
<td>45</td>
</tr>
</tbody>
</table>

CHAPTER 2

<table>
<thead>
<tr>
<th>Figure/Structure</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2 Di phenylpropanoic Acid</td>
<td>56</td>
</tr>
<tr>
<td>Isobutyric Acid</td>
<td>57</td>
</tr>
<tr>
<td>Pivalic Acid</td>
<td>61</td>
</tr>
<tr>
<td>2-Quinolinecarboxylic Acid</td>
<td>62</td>
</tr>
<tr>
<td>2,4,6 - Trimethylbenzoic Acid</td>
<td>66</td>
</tr>
<tr>
<td>α,β - Unsaturated Carboxylic Acids</td>
<td>67</td>
</tr>
<tr>
<td>Cinnamic and Crotonic Acids</td>
<td>68</td>
</tr>
<tr>
<td>Figure 2.1: A possible scheme for formation of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)(CH$_3$CH=CHCO$_2$H)</td>
<td>72</td>
</tr>
<tr>
<td>Figure 2.2: The Structure of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)(CH$_3$CH=CHCO$_2$H)</td>
<td>75</td>
</tr>
<tr>
<td>Figure 2.3: The Structure of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)(CH$_3$CH=CHCO$_2$H)</td>
<td>76</td>
</tr>
</tbody>
</table>
A possible structure for \(\text{TiCl}_2[(\text{CH}_3)_3\text{CCO}_2]\text{EtOAc}_2\text{C}_6\text{H}_4\)

CHAPTER 3

Proposed structure for \(\text{TiCl}_3(\text{CH}_3\text{CO}_2)\)

Figure 3.1: A possible structure for \(\text{TiX}_2(\text{RCO}_2)_2\) complexes

Figure 3.2: The \(^1\text{H}\) NMR Spectra of \(\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2]\)

Figure 3.3: Variable temperature \(^1\text{H}\) NMR spectra of \(\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2]\)

Figure 3.4: The structure of \(\text{Ti}_{2}\text{Cl}_9[(\text{CH}_3)_3\text{CCO}_2]_3\)

Figure 3.5: The structure of \(\text{Ti}_{2}\text{Cl}_9[(\text{CH}_3)_3\text{CCO}_2]_3\)

Figure 3.6: MA\(_4\)B\(_2\)Systems

Figure 3.7: Isomerisation and Dimerisation of \(\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2]\)

Figure 3.8: Carboxylate Scrambling and Exchange

Figure 3.9: Dimeric Structure for \(\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2]\)

CHAPTER 4

Figure 4.1: The structure of the \(\text{TiCl}_4\text{O}_2\) Anion

Figure 4.2: The structure of \(\text{[TiO(acac)]}_2\)

Figure 4.3: The structure of \(\text{[η}^5-\text{C}_5\text{Me}_5\text{TiMe(μ-O)]}_3\)

Figure 4.4: The Ti-O ring in \(\text{[NH}_4\text{]}_2\text{TiO(C}_2\text{O}_4\text{)}_2\text{H}_2\text{O}_4\)

Figure 4.5: The structure of \(\text{[η}^5-\text{R}][\text{TiCl}(μ-\text{O})]_4(\text{R}=\text{C}_5\text{H}_5\text{ or } \text{CH}_3\text{C}_5\text{H}_4)\)

Figure 4.6: The structure of \(\text{[TiCl}_2(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}]_2\text{O}\)

Figure 4.7: The structure of \(\text{[OsCl}_2(\text{CH}_3\text{CO}_2)\text{PPh}_3]_2\text{O}\)

Figure 4.8: \(^{17}\text{O}\) NMR spectra of \(\text{[TiCl}_2[(\text{CH}_3)_3\text{CCO}_2]_2\text{O}\)

Figure 4.9: Modified A\(_{\text{AC}}\)2 Ester Hydrolysis Mechanism

Figure 4.10: Acid Catalysed Esterification Mechanism

Figure 4.11: Cyclic voltammogram of \(\text{TiCl}_2[(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}]_2\text{O}\)

CHAPTER 5

Figure 5.1: The structure of \(\text{TiMgCl}_6(\text{EtOAc})_4\)

Figure 5.2: Structures of the\([\text{Mg}_2(μ-\text{Cl})_3(\text{THF})_6]^+\) cation and \([\text{TiCl}_5(\text{THF})]^+\) anion.

Figure 5.3: The structure of \(\text{MgTiCl}_5(\text{CICH}_2\text{CO}_2)(\text{CICH}_2\text{COOC}_2\text{H}_5)_3\)

Figure 5.4: The structure of \(\text{FeMgCl}_4(\text{THF})_4\)

Figure 5.5: General structure for \(\text{TiMgCl}_6(\text{RCO}_2\text{H})(\text{EtOAc})_2\) complexes

Figure 5.6: A possible structure for \(\text{TiMgCl}_4(\text{C}_6\text{H}_5\text{CO}_2)_2\cdot_2\text{EtOAc}\)

CHAPTER 6

Figure 6.1: Freezing Point Measurement Device

Figure 6.2: Titanium Analysis Graph

APPENDIX 1

Syn/Anti Oximes

Ester Rotamers
ACKNOWLEDGEMENTS

I would like to thank Professor Malcolm Wallbridge for his unflagging enthusiasm, support and guidance during this work.

Useful discussion with Drs. John McMeeking and P.J.V. Jones of Imperial Chemical Industries PLC are also gratefully acknowledged.

Thanks are also due to Dr. N.W. Alcock, Dr. M. Pennington, D. Brown and M. Roe for their collaboration in the crystallographic work presented in this thesis.

I would like to thank all those who contributed to making my time at the University enjoyable. These include Cindy Hall, Paul Billinger, Aubrey Thyer, Harry Powell, Jim Barker and many others too numerous to mention.

I would also like to thank all at Secretarial & Associated Services, particularly Mrs. Sandra Tomkins, for their hard work in making this work presentable.

Financial support from the S.E.R.C. and I.C.I. PLC through a C.A.S.E. Award is acknowledged.
DECLARATION

Part of the work on the hydrolysis reactions of TiCl$_3$(RCO$_2$) complexes reported upon in this thesis was previously published in:

SUMMARY

This thesis describes preparative methods for a number of titanium (IV) trischloromonocarboxylates, TiCl$_3$(RCO$_2$)(R = C$_6$H$_5$, (C$_6$H$_5$)$_2$(CH$_3$)C, (CH$_3$)$_2$CH, (CH$_3$)$_3$C, C$_9$H$_6$N, o - CH$_3$C$_6$H$_4$, p - CH$_3$C$_6$H$_4$, C$_6$H$_2$(CH$_3$)$_3$, C$_6$H$_5$CH=CH and CH$_3$CH=CH). The reactions of some of these carboxylates with oxygen and nitrogen donor ligands are also described.

An X-ray crystallographic study of TiCl$_3$[(CH$_3$)$_3$CO$_2$] showed that the complex exists as trimeric molecules in the solid state. Cryoscopic molecular weight and 1H NMR experiments indicated that the complex dissociates into dimers in solution.

The structure of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)(CH$_3$CH=CHCO$_2$H) is reported. The complex has a triply bridged structure with two bridging chlorine atoms and a carboxylate bridge linking the titanium centres.

Hydrolysis reactions of TiCl$_3$(RCO$_2$) species are described and an unusual 17O exchange effect in esters was observed. A mechanism based upon the A$_{AC2}$ ester hydrolysis mechanism is proposed for this effect. Cyclic Voltammetry experiments on [TiCl$_2$(C$_6$H$_5$CO$_2$)EtOAc]$_2$O indicate that both Ti (IV) centres are reduced to Ti(III) and that the reduction product reacts with a component of the solution to regenerate the starting material.

Some titanium-magnesium bimetallic complexes were prepared and characterised.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>amps</td>
</tr>
<tr>
<td>Ac</td>
<td>acetyl CH₃C=O</td>
</tr>
<tr>
<td>acac</td>
<td>acetylacetonate C₅H₇O₂</td>
</tr>
<tr>
<td>B</td>
<td>bidentate ligand</td>
</tr>
<tr>
<td>b</td>
<td>broad</td>
</tr>
<tr>
<td>bipy</td>
<td>2,2'-bipyridyl</td>
</tr>
<tr>
<td>Cp</td>
<td>cyclopentadienyl ligand C₅H₅⁻</td>
</tr>
<tr>
<td>d</td>
<td>doublet</td>
</tr>
<tr>
<td>DIAE</td>
<td>diisopentyl ether (diisoamyl ether)</td>
</tr>
<tr>
<td>Eₚ,c</td>
<td>cathodic peak potential</td>
</tr>
<tr>
<td>E₁/₂</td>
<td>half wave potential</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl C₂H₅</td>
</tr>
<tr>
<td>EtOAc</td>
<td>ethyl acetate CH₃COOC₂H₅</td>
</tr>
<tr>
<td>iₚa</td>
<td>anodic peak current</td>
</tr>
<tr>
<td>iₚc</td>
<td>cathodic peak current</td>
</tr>
<tr>
<td>i.r.</td>
<td>infra-red</td>
</tr>
<tr>
<td>L</td>
<td>monodentate ligand</td>
</tr>
<tr>
<td>m</td>
<td>in infra-red = medium</td>
</tr>
<tr>
<td>m</td>
<td>in NMR = multiplet</td>
</tr>
<tr>
<td>Me</td>
<td>methyl CH₃</td>
</tr>
<tr>
<td>NMR</td>
<td>nuclear magnetic resonance</td>
</tr>
<tr>
<td>OEP</td>
<td>octaethylporphinato</td>
</tr>
<tr>
<td>Ph</td>
<td>phenyl C₆H₅</td>
</tr>
<tr>
<td>phen</td>
<td>1,10-phenanthroline</td>
</tr>
<tr>
<td>p.p.m.</td>
<td>parts per million</td>
</tr>
<tr>
<td>py</td>
<td>pyridine C₅H₅N</td>
</tr>
<tr>
<td>pyH</td>
<td>pyridinium ion C₅H₆N⁺</td>
</tr>
<tr>
<td>q</td>
<td>quartet</td>
</tr>
<tr>
<td>R</td>
<td>alkyl or aryl group</td>
</tr>
<tr>
<td>s</td>
<td>in NMR = singlet</td>
</tr>
<tr>
<td>s</td>
<td>in infra-red = strong</td>
</tr>
<tr>
<td>sh</td>
<td>shoulder</td>
</tr>
<tr>
<td>t</td>
<td>triplet</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran C₄H₈O</td>
</tr>
<tr>
<td>TMS</td>
<td>tetramethylsilane (CH₃)₄Si</td>
</tr>
<tr>
<td>V</td>
<td>volts</td>
</tr>
<tr>
<td>w</td>
<td>weak</td>
</tr>
</tbody>
</table>
CHAPTER 1.
INTRODUCTION

Considerable interest in titanium chemistry has been generated by the ability of some titanium compounds to catalyse or accelerate the reactions of organic molecules(1). Some examples are illustrated below:

\[\text{RCHO} + \text{CH}_2(\text{COOC}_2\text{H}_5)_2 \rightarrow \text{TiCl}_4 \rightarrow \text{CHR} = \text{C(\text{COOC}_2\text{H}_5)_2} \]

\[\text{2} \quad \frac{\text{R}_1\text{C}=\text{O}}{\text{TiCl}_3\text{3THF}} \rightarrow \frac{\text{Mg}}{\text{R}_1\text{C}=\text{C}} \]

\[\text{COCH}_3 \rightarrow \frac{\text{OH}}{\text{COCH}_3} \]

There are many examples of such reactions; however the most significant industrially is the polymerisation of olefins by titanium based Ziegler-Natta catalysts(2). In 1980 over a million tons of polypropylene was made using Ziegler catalysts in Western Europe alone(3).

A Ziegler-Natta polymerisation catalyst consists of a titanium halide in combination with an aluminium alkyl. A more recent modification combines the titanium component with an aromatic ester, the catalyst is then mixed with an inert support. Ziegler-Natta catalysts are discussed in more detail later.

There is some evidence that when titanium tetrachloride and esters are used in the catalyst then titanium carboxylates are formed(3). The compound \(\text{TiMgCl}_5 \left(\text{O}_2\text{CCH}_2\text{Cl} \right) \left(\text{ClCH}_2\text{COOC}_2\text{H}_5 \right)_3 \) formed by the reaction of titanium tetrachloride, magnesium chloride and ethyl
chloroacetate contains a carboxylate group formed by cleavage of the ester. Its structure is shown below. It is possible that titanium carboxylates are present in supported Ziegler-Natta catalysts.

![Structure of chloroacetate](image)

A literature search revealed very little reliable information on the chemistry, properties or structures of TiClₓ (RCO₂)₄₋ₓ (R = alkyl, aryl; x = 1,2,3) species so it was decided, in consultation with ICI plc, to study the TiCl₃ (RCO₂) species.

This thesis reports preparative methods and some chemistry for a range of titanium (IV) tris(chloro)monocarboxylates. Also reported is the first crystal and molecular structure of a TiCl₃ (RCO₂) compound.

Some work has also been carried out, in this study, on titanium-magnesium bimetallic species containing carboxylate groups.

Hydrolysis reactions of the TiCl₃ (RCO₂) complexes have been examined, and an unusual ¹⁷O exchange effect in esters has been observed.
The following introductory chapter contains background information and is of necessity selective. In particular only titanium chemistry relevant to the thesis is included in the general sections.

ZIEGLER-NATTA TYPE OLEFIN POLYMERISATION CATALYSTS

The discovery by Ziegler(4) that a catalyst comprising a transition metal compound and an organometallic derivative of a group I, II or III element will polymerise ethene at room temperature and atmospheric pressure revolutionised the world's bulk plastics industry. Previous catalysts required high pressures and high temperatures to produce polyolefins so Ziegler's catalytic system was superior in these respects.

Many variations on the original catalysts have since been patented for the production of polyethylene, but it proved more difficult to discover a catalyst which would polymerise propylene into a useful form of polypropylene.

A variety of isomeric forms of polypropylene can be made; head to tail and head to head plus tail to tail units can be produced.

\[
\text{RRR} \quad \text{II head to tail -CH-CH}_2-CH-CH_2\text{-CH-CH}_2
\]

\[
\text{RRR} \quad \text{-CH Head to head plus -CH\text{-CH}_2-Ch\text{-CH}_2-Ch\text{-CH}_2
\]

\[
\text{R=Me}
\]
Head to tail units are most common but can exist in a number of different forms. If the polymer backbone is laid out as a zigzag line then the methyl groups may be either above or below the backbone. Isotactic polypropylene has all groups on one side of the backbone, syndiotactic polypropylene has the groups alternating between above and below the backbone and atactic polymer has random arrangement of the methyl groups.

Isotactic and syndiotactic polymers have desirable properties from the industrial viewpoint so a successful catalyst must maximise the proportion of these forms in the polymer produced.

Most propylene polymerisation catalysts are based upon TiCl₃. It has been found that the α form of TiCl₃ gives increased yields of
stereoregular polymer compared with the β, γ or δ forms(5). The titanium trichloride is activated using an alkyl aluminium compound such as AlEt₃, or a diethylaluminium halide; the activator can also affect the activity and stereospecificity of the catalyst.

Attempts have been made to improve the basic TiCl₃/alkyl aluminium catalyst. One method of doing this is addition of a Lewis base. The Lewis base may either be added along with the activator or incorporated into the catalyst itself. A wide range of Lewis bases have been used including amines, phosphines, phosphites, ethers, esters and sulphur or boron compounds(6).

The Lewis base acts in a complex manner since it is capable of interaction with both the titanium trichloride and the aluminium alkyl activator. The base may remove catalytic poisons as complexes and assist in the fragmentation of the catalyst increasing the number of active sites. It can also increase the stereoregularity of the polymer produced.

The base is incorporated into the catalyst by milling a mixture of the base and TiCl₃. A successful catalyst is only produced when the temperatures and times used in each step of the milling process are correct. Some catalysts of this type are commercially important, their activity being so high that only chlorine residues need to be removed from the highly stereospecific polypropylene formed. Some examples of these catalysts are shown in Table 1.1.

Another type of catalyst is that patented by Solway and Cie(7). This catalyst consists of alkyl reduced titanium tetrachloride treated with diisopentyl ether and then treated with titanium tetrachloride. The catalyst uses a
diethyl aluminium chloride activator in polymerisations. It is a very active catalyst giving polymer yields of 715g polymer (mmol Ti)-1h-1. Its composition is TiCl3 (AlEt₃Cl₃-n)0.032(DIAE)0.061. Its activity is due to the high surface area of the spherical microparticles of which the catalyst is composed. Good stereospecificity is also achieved.

SUPPORTED CATALYSTS

As only a small proportion of titanium atoms form active sites in the catalyst much of the bulk titanium trichloride may be replaced by an inert support without affecting polymer properties.

The components of a successful supported catalyst are very limited. They consist of magnesium chloride, an aromatic ester, and titanium tetrachloride. The catalyst is used together with a triethylaluminium activator and another aromatic ester.

The range of support materials usable in a successful catalyst is also very limited. Magnesium chloride is the most effective followed by manganese dichloride. It appears magnesium chloride is the best material because its crystal structure is similar to that of α or γ TiCl₃, the material which it replaces. The Ti⁴⁺ and Mg²⁺ ions also have similar ionic radii thus making the two parts of the catalyst compatible.

To achieve the required polymer stereoregularity it is important to mill the MgCl₂ with the aromatic ester and then treat with TiCl₄ rather than milling MgCl₂ with the TiCl₄ ester complex(8).
<table>
<thead>
<tr>
<th>Catalyst</th>
<th>Chem. Abstr. Ref.</th>
<th>Yield (gmmol-h-1atm-1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlCl₃. 3TiCl₃ milled with (EtO)₄Si and methyl Methacrylate.</td>
<td>84; 31,747</td>
<td>6</td>
</tr>
<tr>
<td>TiCl₃ treated with thioether used with n-propyl or n-hexyl-aluminium alkyl.</td>
<td>91; 175, 965</td>
<td>3260a</td>
</tr>
<tr>
<td>TiCl₃. Et₂AlCl treated with TiCl₃ and (EtO)₃P</td>
<td>91; 21, 725</td>
<td>3.5</td>
</tr>
<tr>
<td>AlCl₃. TiCl₃ milled with an ether e.g. nBu₂O, diisopentyl ether or MeOPh.</td>
<td>89; 90,478</td>
<td>13</td>
</tr>
</tbody>
</table>

agmmol-1
The only Lewis bases which can be used to prepare successful supported catalysts are aromatic esters. These are the only Lewis bases which will produce the high stereospecificity required in the polymer. Best results appear to be obtained using the methyl and ethyl esters of benzoic, toluic or anisic acids. Ciardelli has shown that if the Lewis base reacted with the MgCl2 is optically active the polymer produced will also be optically active(9).

Little evidence exists as to the nature of the molecular species in this type of catalyst. Infra-red spectra of catalysts in which MgCl2 is milled with titanium ester complexes suggest the ester is bound to the magnesium(10). The molecular species present may be similar to the MgCl2. TiCl4.4 EtOAc complex whose structure has been determined by Bart et al(11).

Another possible model is the triply bridged species TiMgCl5 (O2CCH2Cl) (CH2ClCOOC2H5)3 prepared and structurally characterised by Bassi et al(12). This complex contains a CH2ClCO2- bridge from an ethylchloroacetate molecule which has lost an ethyl group becoming bonded to both the titanium and magnesium atoms.
The structure of TiMgCl₅(ClCH₂CO₂) (ClCH₂COOC₂H₅)₃.

It is therefore possible that such ester cleavage may occur in the supported catalysts producing carboxylate bridges.

THE MECHANISM OF ZIEGLER-NATTA CATALYSIS

The mechanism of Ziegler-Natta catalysis has still not been completely established. There have been four types of mechanism proposed to explain the polymerisation of olefins by Ziegler-Natta catalysts. These are:

(i) A radical mechanism.
(ii) An anionic mechanism.
(iii) Mechanisms involving growth at the activator alkyl.
(iv) Mechanisms involving propagation at a transition metal-carbon bond.
The earliest suggestion was the radical mechanism; various initiators were proposed, the transition metal centre by Friedlander and Oita, the aluminium centre by Duck or an alkyl radical by Nenitzescu. Some monomers, for instance vinyl chloride, do polymerise by a radical mechanism in the presence of Ziegler-Natta catalysts but Ziegler-Natta polymerisation of ethene gives a different type of polythene to that produced by high pressure radical processes.

\[R_3Al + TiCl_4 \rightarrow R_2AlCl + RTiCl_3 \]

\[RTiCl_3 \rightarrow R' + TiCl_3 \]

\[R' + C_2H_4 \rightarrow R-CH_2-CH_2 \text{ etc.} \]

The Nenitzescu radical mechanism.

The anionic mechanism was proposed by Gilchrist. In this mechanism the polymer chain ends in an anionic carbon which is not bound to a metal. Initiation occurs by transfer of an alkyl anion from the metal alkyl to an absorbed alkene.

The most likely mechanisms are those in which growth occurs at a metal-alkyl bond. This could be an alkyl bond to the transition metal, to the activator or an alkyl bridging the transition metal and activator centres. Some evidence exists which supports the idea of the propagation centre being a metal alkyl bond. This evidence was obtained by using 14C labelled aluminium alkyl or by introducing 2H or 3H as a chain transfer agent.
Mechanisms proposing propagation at the activator alkyl were proposed by Natta (19) and by Patat and Sinn (20). These both involve the growing polymer chain acting as a bridging group between aluminium and titanium. In Natta's mechanism an alkene forms a Π-bond with titanium breaking the bridge, the polymer chain then moves onto the alkene which has formed a σ-bond with the titanium due to polarisation. Then the polymer bridge reforms.

The Natta mechanism.

The most generally accepted mechanism for olefin polymerisation by Ziegler-Natta catalysts is that proposed by Cossee and Arlman (21). In this mechanism polymerisation occurs at surface titanium atoms with a vacant coordination site. The activator replaces one chlorine on the titanium by
an alkyl. Then the alkene complexes at the vacant site and via a four membered cyclic intermediate the alkyl group is transferred to the bound alkene which is now σ bonded to the titanium. The alkyl ligand and the vacant site then exchange positions and further insertion occurs. This mechanism is shown in Figure 1.1.

A similar mechanism is that suggested by Rodriguez and Van Looy(22). The chief difference being that the polymer chain is considered to bridge between the transition metal and activator.

Green and Rooney (23) have proposed a mechanism involving a metal hydride carbene intermediate formed by a 1,2 hydrogen shift from the growing polymer chain to the transition metal centre. Alkene then coordinates to the transition metal and interacts with the carbene to form a metallocyclobutane. The hydride then returns to the tertiary carbon atom and the process continues.

Grubbs and coworkers (24) have shown using isotope stereochemistry experiments that the Green mechanism does not apply to Ziegler-Natta polymerisation.

STEREOSPECIFICITY IN ZIEGLER-NATTA POLYMERISATION

Crystalline isotactic polymer is the desired product for commercial Ziegler-Natta polymerisation processes. The stereospecificity is controlled by steric interactions. Zambelli and coworkers have shown by 13C NMR(25) that isotacticity is caused by the asymmetry of the transition
metal centre, and that syndiotactic stereocontrol is due to the influence of the last monomer unit in the polymer chain.

Orientation of the inserting monomer is also of importance. Cossee(26) suggested that isotactic polymerisation occurs due to monomer molecules only being able to fit into the vacant site postulated in his mechanism(21) with the CH₂ group pointing into the TiCl₃ lattice and a CH₃ group pointing out of the surface.

An α-alkene may add to the polymer chain in two different ways. It may bind the unsubstituted carbon atom to the active centre (primary addition) or it may bind the substituted carbon atom to the active centre (secondary addition). It has been shown that isotactic polymerisation proceeds via primary addition(27) and syndiotactic polymerisation proceeds via secondary addition.(28)
Figure 1.1: The Cossee and Arlman mechanism.
TITANIUM CARBOXYLATES AND POLYMERISATION

A number of polymerisation catalysts use a titanium carboxylate species as the transition metal component. Some titanium carboxylate polymerisation catalysts predate Ziegler's original patent for the titanium tetrachloride/triethyl aluminium system. A selection of titanium carboxylate polymerisation catalysts is shown in Table 1.2.

CARBOXYLIC ACIDS AND METAL CARBOXYLATES

Carboxylic Acids

Monocarboxylic acids are defined as organic compounds containing one carboxyl (-COOH) group. The carboxyl group may carry a range of other groups which influence the properties of the acid.

A Carboxylic acid.

The acidity of the carboxylic acid depends upon the degree of ionisation of the carboxyl group into a carboxylate anion and a hydrated proton.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Catalytic System</th>
<th>Monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Oil Development Co. Brit. Pat. 578,888 (1946)</td>
<td>TiCl$_2$(OAc)$_2$ (Friedel-Crafts type Catalyst)</td>
<td>-</td>
</tr>
<tr>
<td>CA 41 : P3478a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"Montecatini" Ital. Pat. 578,728 (1958)</td>
<td>TiCl$_2$(O$_2$CR)$_2$ (R=CH$_3$, C$_2$H$_5$, or C$_6$H$_5$) with Et$_3$Al</td>
<td>ethylene</td>
</tr>
<tr>
<td>CA 53 : P20913d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montecatini Edison Spa Ger. Offen. 2,013,730 (1970)</td>
<td>TiCl$_3$(OBz) milled with MgCl$_2$ or MgBr$_2$ used with iso-Bu$_3$Al</td>
<td>ethylene</td>
</tr>
<tr>
<td>CA 73 : 121062n</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montecatini Edison Spa Fr. Pat. 2,103,071 (1970)</td>
<td>TiCl$_3$(AcO) and 1:1 MgCl$_2$:NaCl mixture used with iso-Bu$_3$Al</td>
<td>ethylene</td>
</tr>
<tr>
<td>CA 78 : 44266f</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maruzen Petrochemical Co. Ltd. Japan Kokai 72 34,587 (1972)</td>
<td>TiCl$_3$(OBz) and Bu$_3$Al in toluene</td>
<td>1-butene 1-hexene</td>
</tr>
<tr>
<td>CA 78 : 137026t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maruzen Petrochemical Co. Ltd. Japan Kokai 72 34,588 (1972)</td>
<td>TiCl$_3$(OBz) or TiCl$_3$(OAc) with iso-Bu$_3$Al in toluene</td>
<td>Propylene 2,1-hexene 1,7 Octadiene (forms a co-polymer)</td>
</tr>
<tr>
<td>CA 79 : 79722z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CA 76 : 47124c</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rafikov et al Izv. Akad. Navk. SSSR, Ser Khim 1975, 7, 1615-17</td>
<td>TiCl$_2$(RCO$_2$)$_2$ [R=CH$_3$, CH$_2$Cl CHCl$_2$, CCl$_3$ or CF$_3$] with iso-Bu$_3$Al</td>
<td>butadiene</td>
</tr>
<tr>
<td>CA 83 : 193805m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acetic acid has a pK_a of 4.74, however if the acid contains an electron withdrawing group, then the carboxylate anion will be stabilised, and the pK_a lowered. If the acid contains an electron releasing group inductive effects will cause the acid to have a pK_a which is increased relative to that of acetic acid.

Carboxylic acids tend to dimerise due to intermolecular hydrogen bonding. In the solid state neutron diffraction measurements\(^{(30)}\) show that the acids form a cyclic dimer while in aqueous solution an open dimeric form is preferred.\(^{(31)}\)

![Carboxylic acid cyclic dimer.](image)

![Carboxylic acid open dimer.](image)
The carboxylate anion is symmetrical with two equal C-O bonds 1.26Å long. The O-C-O bond angle is in the range 125-130°. Resonance stabilisation is responsible for the symmetry of the carboxylate anion.

CARBOXYLATE COORDINATION MODES

Carboxylate anions may coordinate to metals in many different ways. The large number of different carboxylate structures may be explained by considering the main bonding modes and the possibility of a carboxylate using two or more bonding modes at once.
The main carboxylate coordination types are discussed below:

(i) Ionic

\[
\text{e.g. } [\text{Na (O}_2\text{CH)}]^{32}\]

It appears that there is little cation-anion interaction in the carboxylates of elements such as Na or K so these carboxylates are considered to be ionic with two equal C-O bonds in the carboxylate anion.

(ii) Unidentate

\[
\text{e.g. } [\text{C}_6\text{H}_5\text{Hg (O}_2\text{CCH}_3)]^{34}\]
\[
[(\text{Cyclo-C}_6\text{H}_{11})_3\text{Sn(O}_2\text{CCH}_3)]^{35}\]

\[
\text{CH}_3\text{C}^\text{O}\text{O-Li}
\]
The anion bonds to the metal through one oxygen resulting in a pseudo-ester configuration with unequal C-O bond lengths.

(iii) **Bidentate chelating**

\[((\eta^5-C_5H_5)_2Ti(O_2CCMe_3))^{36} \]

\[[Hg(O_2CCH_3)_2(Bu_3P)]^{37} \]

The few confirmed examples of bidentate chelating carboxylate anions seem to indicate that this mode occurs mainly due to steric interactions.

In Sn \((O_2CCH_3)_4\) three of the acetate ions are bidentate symmetrical chelating but steric crowding around the tin atom prevents the coordination of eight ligand atoms, so one ion is a bidentate unsymmetrical chelating group with one Sn-O bond longer than the other\(^{38}\)

\[[Sn(O_2CCH_3)_4] \]
(iv) Bidentate bridging

Carboxylate anions readily form bidentate bridges giving oligomeric or polynuclear species. Four types of carboxylate bridges have been identified.

Syn-Syn*

e.g. [Ru₂(O₂CC₃H₇)₄Cl]⁴⁺⁰⁰
[Mo₂(O₂CCH₃)₄]⁴⁺¹¹

Syn-Syn bridges allow the metal atoms to approach close enough for bonding interactions to occur.

[M₂(O₂CR)₄]

*See Appendix 1.
Anti-Syn

e.g. $[\text{Cu} (\text{O}_2\text{CCH}_3)_2]^{42}$
$[\text{Me}_3\text{Sn}(\text{O}_2\text{CCH}_3)]^{43}$

Anti-Anti

e.g. $[\text{Mn}(\text{O}_2\text{CCH}_3)_2(\text{H}_2\text{O})_4]^{44}$

In complexes which only contain these types of bridges metal-metal bonding interactions do not occur.

Monatomic

e.g. $[\text{Hg}(\text{O}_2\text{CCH}_3)_2[(\text{cyclo-C}_6\text{H}_{11})_3\text{P}]]^{45}$
$[\text{Cu} (\text{O}_2\text{CCH}_3)]^{46}$
The non-monatomically bridging oxygen atom of the anion may interact with one of the metal atoms being bridged or with a different metal atom. In Cu(O₂CH₃) it forms a syn-syn bridge to another copper⁴⁶.

OLIGOMERIC METAL CARBOXYLATES

The various bonding modes of the carboxylate anion allow the formation of multinuclear oligomeric species connected together by carboxylate bridges.

Dimers are most common for the +2 state of metals, $M_2(O_2CR)_4$ species being known for (Cr, Mo, W, Rh, Cu⁷) and Zr⁵. These species have the general structure:

```
R  
\   \  
O—C—O  M  C—O
\   \  
L  
```

Some dimers occur for other oxidation states e.g. Re₂(O₂CR)₄ Cl₂ which is Re(III)⁴⁸ and Os₂(O₂CCH₃)₂(CO)₆ which is Os (I)⁴⁹.
Many trimeric metal carboxylates are known\(^{(50)}\). Most of these have the trinuclear structure shown below. The three metal atoms are arranged in a triangle with bridging carboxylates and a central oxygen atom. This structure is common for M(III) carboxylates.

An alternative trimetal structure is linear as found in \([\text{Zn}_3(\text{CH}_3\text{CH}=\text{CHCO}_2)_6 (\text{C}_9\text{H}_7\text{N})_2\] \(^{(51)}\). This complex contains four bidentate and two monodentate carboxylate ligands with two terminal quinoline ligands.

Tetramers are not as common but are found for Pt(II)\(^{(52)}\), Zn\(^{(53)}\) and Co\(^{(64)}\). The zinc and cobalt structures are similar to that of Be\(_4\text{O}(\text{O}_2\text{CH}_3)_6\). The
platinum structure contains a metal-metal bonded square cluster of platinum atoms with 4 syn-syn carboxylate ligands in the plane of the cluster and 4 alternately above and below it.

Some polymeric carboxylates exist notably Me₃Sn(O₂CH) which forms long molecular chains with bridging formate groups (55).

IDENTIFICATION OF CARBOXYLATE BONDING MODE

It is difficult to distinguish between the different types of carboxylate coordination. The only techniques which are applicable being diffraction methods, and vibrational spectroscopy.

The coordination type cannot be determined by examination of the number of infra-red or Raman vibrations due to the low symmetry of carboxylate anions. Attempts have been made to relate the bonding mode to the values of C-O stretching frequencies.

The bonds used in attempts to relate bonding mode to vibrational spectra are usually the CO₂- symmetric stretch (v₃) and the CO₂- asymmetric stretch (v₈). However even for relatively simple carboxylate ions, the asymmetric stretch also contains some carboxylate rocking mode and the symmetric stretch has contributions from any methyl deformations present as well as from carboxylate deformation and carbon-carbon stretching modes. When the carboxylate anion coordinates to a metal the symmetric and asymmetric bonds will shift.
Rigorous bond assignments have only been performed for the acetate(66) and formate(67) carboxylate anions. Therefore assignments of ν(CO$_2$-)$_{\text{asym}}$ and ν(CO$_2$-)$_{\text{sym}}$ for other carboxylates may be less accurate.

Two methods of using infra-red spectroscopy to determine carboxylate bond mode have been proposed:

(i) Difference of Carboxylate Stretching Frequencies (Δ) Method

The carboxylate anion contains two equivalent oxygen atoms for all bonding modes apart from unidentate. In the case of unidentate coordination the oxygen atoms become inequivalent. This causes ν(CO$_2$-)$_{\text{asym}}$ to increase, ν(CO$_2$-)$_{\text{sym}}$ to decrease and the separation between the two (Δ) to increase. It has been proposed(68,57) that Δ values considerably larger than the ionic value (e.g. Δ for sodium acetate = 223cm$^{-1}$) indicate unidentate coordination. Carboxylates with a Δ value less than that for ionic carboxylates were supposed(57) to be chelating or bridging.

(ii) Shift from Ionic Values Method

Manhas and Trikha(68) proposed that the type of carboxylate coordination could be related to the shift of the ν(CO$_2$-) bonds relative to the ionic case.

However a recent paper(59) has shown that this approach is completely invalid except for the unidentate case. For the unidentate case this criterion is merely a restatement of the Δ method.
The conclusion of the recent reviews (57,59) was that the only bonding mode definitely detectable by infra-red measurements is the unidentate mode. In some cases chelating and/or bridging modes may be detected by infra-red methods.

GENERAL TITANIUM CHEMISTRY

This section is not intended to be a comprehensive review of titanium compounds. Many books and reviews are available, thus only general features are presented for introductory purposes.

Titanium is the first d-block transition element in the periodic table. It has four valence electrons in the configuration 3d24s2. The most common oxidation state is titanium (IV). Less stable oxidation states are -I, 0, II and III; these states are readily oxidized to titanium (IV). As the energy for removal of all four valence electrons is high the Ti4+ ion does not exist and titanium (IV) compounds are mainly covalent.

LOW VALENT TITANIUM COMPLEXES

Few compounds are known for the -I,0, and II oxidation states. The O and -I states occur in the complexes Ti(bipy)3 and Li[Ti(bipy)3] prepared by Herzog and coworkers(61). Dimethylformamide forms a grey-green complex with TiCl2(62). A range of complexes, general formula TiCl2-2L (L = CH3CN, C4H8O, C5H10O, pyridine, bipy and phen), have been synthesized(63). These complexes are reported to have six coordinate polymeric structures.
TITANIUM (III)

Titanium (III) forms a wide range of complexes with many different stoichiometries such as $[ML_6]^{3+}3X^-$, $[ML_4X_2]^+X^-$, $[ML_3X_3]$, $[ML_2X_3]$, $R^+[ML_2X_4]^{-}$ and $(R^+)_3[MX_6]^{3-}$ where $L =$ monodentate ligand, $X =$ a halide and $R =$ monovalent cation. There are also compounds with bi- and terdentate ligands coordinated to the titanium (III) centre.

In aqueous dilute acid solution the Ti$^{3+}$ ion exists as $[Ti(H_2O)_6]^{3+}$ but the crystalline hexahydrates of titanium trichloride and tribromide exist as $[Ti(H_2O)_4X_2]X.2H_2O$. This stoichiometry also occurs when TiCl$_3$ is dissolved in an alcohol, $(Ti(alcohol)_4Cl_2)^+Cl^-$ being formed(64).

Neutral $[ML_3X_3]$ complexes are very common. They are normally prepared by refluxing the titanium trihalide in an appropriate ligand. Ligands used include THF, dioxan, acetone, formamide, acetonitrile, pyridine and γ-picoline.

Complexes with the $[ML_2X_3]$ stoichiometry are five coordinate. An X-ray investigation of TiBr$_3$.2NMe$_3$ has shown that the complex has a trigonal bipyramidal structure with the ligands occupying the axial positions(65).

Reaction of $[TiCl_3.3MeCN]$ with tetraethylammonium chloride or bromide gives the complexes Et$_4$N $[TiCl_4.2MeCN]$ or Et$_4$N $[TiCl_3.Br.2MeCN]$ respectively(66). The salt $(pyH)_3[TiCl_6]$ may be isolated from the reaction between $[TiCl_3.3MeCN]$ and pyridinium chloride(66).
With bidentate ligands (B) such as acetylacetone and its variants titanium trichloride forms strongly coloured complexes with the general formula TiB₃(67). Two types of complex are formed with neutral bidentate ligands. One type has the structural formula [TiB₃]X₃ and the other [TiCl₂B₂][TiCl₄B]. Dimethoxyethane forms complexes of the type [TiBr₂(C₄H₁₀O₂)₂][TiBr₄(C₄H₁₀O₂)] with titanium tribromide(68).

Titanium trichloride forms a dark green 1:1 adduct on reaction with 2,2',2",-terpyridyl(64). It is probably an octahedral monomer.

TITANIUM (IV)

The chemistry of titanium (IV) has been much investigated and is now well established. Most work has concerned the synthesis of titanium tetrachloride adducts using neutral ligands. The titanium atom in these adducts may be five, six, seven or eight coordinated depending upon the ligand. A common feature of the chemistry of titanium tetrahalides is reaction with a ligand by elimination of hydrogen halide.

The titanium halides all behave as Lewis acids. Titanium tetrafluoride is a white solid. Its lack of solubility in non-polar solvents implies it is a fluorine bridged polymer. The tetra-fluoride forms adducts with nitriles, ketones, alcohols, amines and aldehydes. These adducts have the general formula TiF₄.2L or TiF₄.L. Fluorine NMR experiments suggest that the TiF₄.2L species have octahedral geometry with the ligands cis to each other(69). The 1:1 amine complexes are thought to be fluorine bridged polymers(69).
Titanium tetrabromide is an orange crystalline solid which behaves as a covalent monomer in non-polar solvents. It forms adducts with neutral ligands of the types TiBr$_4$.B and TiBr$_4$.2L (B = bidentate ligand, L = monodentate ligand). Phosphine and amine ligands cause reduction to Ti(III) but complexes with ethers such as tetrahydrofuran are stable.

Titanium tetraiodide is a dark brown solid. Its solid state structure consists of molecular lattices of tetrahedral units. Few complexes of TiI$_4$ have been reported. TiI$_4$ reacts with most ligands but the products have rarely been characterised.

Titanium tetrachloride is a colourless liquid (m.p - 23°C, b.p. 136°C). It fumes strongly in moist air, and reacts vigorously with water forming TiO$_2$. TiCl$_4$ has four coordinate tetrahedral geometry. The Ti-Cl bonds are covalent in nature. It is possible that the titanium (IV) achieves an 18 electron configuration by being involved in π bonding between filled chlorine orbitals and empty titanium 3d orbitals.

There is a huge number of titanium tetrachloride adducts with neutral ligands. The tetrachloride is known to form adducts with nitrogen, oxygen, phosphorus, arsenic and sulphur donor ligands. These adducts are of the form TiCl$_4$.2L, TiCl$_4$.L or TiCl$_4$.B (L = monodentate ligand, B = bidentate ligand). Some properties of selected titanium tetrachloride adducts are shown in Tables 1.3, 1.4 and 1.5.

The TiCl$_4$.2L type adducts are generally octahedrally coordinated with the ligands cis to each other. The X-ray structure of TiCl$_4$.2POCl$_3$ shows this geometry. The TiCl$_4$.B adducts also have octahedral geometry.
<table>
<thead>
<tr>
<th>Ligand</th>
<th>Donor atom</th>
<th>Complex</th>
<th>Colour</th>
<th>M.p/°C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetrahydrofuran</td>
<td>0</td>
<td>TiCl₄.2C₄H₈O</td>
<td>yellow</td>
<td>122-124 dec</td>
<td>64</td>
</tr>
<tr>
<td>Benzophenone</td>
<td>0</td>
<td>TiCl₄.2(C₆H₅)₂CO</td>
<td>yellow</td>
<td>150</td>
<td>64</td>
</tr>
<tr>
<td>Acetonitrile</td>
<td>N</td>
<td>TiCl₄.2CH₃CN</td>
<td>yellow</td>
<td>80 sub</td>
<td>64</td>
</tr>
<tr>
<td>Pyridine</td>
<td>N</td>
<td>TiCl₄.2C₅H₅N</td>
<td>yellow</td>
<td>190 dec</td>
<td>73</td>
</tr>
<tr>
<td>Triphenylphosphine</td>
<td>P</td>
<td>TiCl₄.2(C₆H₅)₃P</td>
<td>red/black</td>
<td>149-151</td>
<td>64</td>
</tr>
<tr>
<td>Triethylphosphine</td>
<td>P</td>
<td>TiCl₄.2(C₂H₅)₃P</td>
<td>dark red</td>
<td>144.5-148</td>
<td>64</td>
</tr>
<tr>
<td>1,4 Thioxan</td>
<td>S</td>
<td>TiCl₄.2C₄H₈S</td>
<td>yellow</td>
<td>-</td>
<td>70</td>
</tr>
<tr>
<td>Dimethylsulphide</td>
<td>S</td>
<td>TiCl₄.2(CH₃)₂S</td>
<td>orange</td>
<td>95-99</td>
<td>64</td>
</tr>
<tr>
<td>Triphenylarsine</td>
<td>As</td>
<td>TiCl₄.2(C₆H₅)₃As</td>
<td>purple</td>
<td>-</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Donor atom</th>
<th>Complex</th>
<th>Colour</th>
<th>M.p/°C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetophenone</td>
<td>O</td>
<td>TiCl₄.C₆H₅COCH₃</td>
<td>yellow</td>
<td>137-139 dec</td>
<td>72</td>
</tr>
<tr>
<td>Benzoyl Chloride</td>
<td>O</td>
<td>TiCl₄.C₆H₅COCl</td>
<td>yellow</td>
<td>63</td>
<td>72</td>
</tr>
<tr>
<td>Acetone</td>
<td>O</td>
<td>TiCl₄.(CH₃)₂CO</td>
<td>yellow</td>
<td>93-97</td>
<td>75</td>
</tr>
<tr>
<td>2-Butanone</td>
<td>O</td>
<td>TiCl₄.CH₃(C₂H₅)CO</td>
<td>yellow</td>
<td>105-110</td>
<td>75</td>
</tr>
<tr>
<td>Para-toluic acid</td>
<td>O</td>
<td>TiCl₄.CH₃C₆H₄COOH</td>
<td>yellow/orange</td>
<td>180 dec</td>
<td>76</td>
</tr>
<tr>
<td>Trimethylamine</td>
<td>N</td>
<td>TiCl₄.N(CH₃)₃</td>
<td>yellow</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td>Triphenylphosphine</td>
<td>P</td>
<td>TiCl₄.(C₆H₅)₃P</td>
<td>red-violet</td>
<td>147.5-149</td>
<td>78</td>
</tr>
<tr>
<td>Triphenylarsine</td>
<td>As</td>
<td>TiCl₄.(C₆H₅)₃As</td>
<td>red-black</td>
<td>126-128</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ligand</th>
<th>Donor atom</th>
<th>Complex</th>
<th>Colour</th>
<th>M.p/°C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diethyl Oxalate</td>
<td>O</td>
<td>TiCl₄.(COOC₂H₅)₂</td>
<td>yellow</td>
<td>104-105</td>
<td>79</td>
</tr>
<tr>
<td>1,2 Diphenylthioethane</td>
<td>S</td>
<td>TiCl₄.(C₆H₅SCH₂-2)₂</td>
<td>red</td>
<td>140</td>
<td>80</td>
</tr>
<tr>
<td>2,2 - Bipyridyl</td>
<td>N</td>
<td>TiCl₄.C₁₀H₈N₂</td>
<td>yellow</td>
<td>>300</td>
<td>64</td>
</tr>
<tr>
<td>Ethylenebis [diphenylphosphine]</td>
<td>P</td>
<td>TiCl₄.[Ph₄P₂C₂H₄]</td>
<td>red</td>
<td>178 dec</td>
<td>79</td>
</tr>
</tbody>
</table>
The TiCl₄.L adducts mostly attain six coordinate octahedral geometry by forming chloro-bridged dimers as illustrated by the X-ray structure of TiCl₄.EtOAc(82).

An exception to this behavior is the trimethylamine adduct TiCl₄.N(CH₃)₃ which has been shown to be five coordinate(77).

Certain arsines can cause the titanium (IV) centre to become seven or eight coordinate. The triarsines methylbis(o-dimethylarsinophenyl)arsine and tris -1,1,1, - (dimethylarsinomethyl)ethane upon reaction with TiCl₄ give seven coordinate complexes(83). The diarsine o-phenylenebis (dimethylarsine) upon reaction with TiCl₄ gives the eight coordinate...
complex TiCl$_4$. 2 diarsine. This has a triangular dodecahedral structure$^{(84)}$. The reasons for this behavior with arsines are as yet unclear. Titanium also has a coordination number of eight in Ti(NO$_3$)$_4$ in which the nitrate ion acts as a bidentate oxygen donor group$^{(85)}$.

Titanium tetrachloride forms compounds with ligands such as acetylacetone by HCl elimination. The TiCl$_2$(acac)$_2$ complex has a six coordinate octahedral geometry with cis chlorine atoms$^{(86)}$. The TiCl$_3$(acac) complex exists as a chlorine bridged dimer in which each titanium atom is six coordinate$^{(87)}$. Partial hydrolysis of TiCl$_2$(acac)$_2$ produces the compound [TiCl(C$_5$H$_7$O$_2$)]$_2$O.CHCl$_3$. This complex contains two TiCl (acac)$_2$ units connected by an oxygen bridge$^{(88)}$. The titanium atoms are octahedrally coordinated with the acetylacetonate groups cis to each other. The chloroform appears to be hydrogen bonded to the oxygens of the acetylacetonate groups.

Another type of titanium compound formed by hydrogen chloride elimination is the alkoxides. These compounds are prepared by the reaction of titanium tetrachloride and the alcohol in the presence of anhydrous ammonia.

\[\text{TiCl}_4 + 4 \text{ROH} + 4 \text{NH}_3 \rightarrow \text{Ti(OR)}_4 + 4\text{NH}_4\text{Cl} \]

In the absence of hydrogen chloride acceptors the reaction only proceeds as far as TiCl$_2$(OR)$_2$.

The alkoxides have a range of forms, Ti(OMe)$_4$ and Ti(OEt)$_4$ are white crystalline solids however most of the alkoxides are colourless or yellow.
liquids. Most titanium alkoxides are polymeric, but those containing bulky alkoxide groups such as t-butyl are monomeric.

An X-ray study of titanium tetraethoxide has shown that the molecule is tetrameric as shown below:

Many organometallic compounds of titanium (IV) are known most of these containing the cyclopentadienyl group. Complexes of the type TiX₃Cp are prepared from the tris-alkoxide species by reaction with acetyl halide(89). The majority of titanium organometallic compounds are bis (cyclopentadienyl) derivatives. TiX₂Cp₂ is prepared by the reaction of titanium tetrachloride and a cyclopentadienyl derivative of Mg, Li or Tl. These compounds have a tetrahedral configuration as shown overleaf:
The organometallic derivatives have an extensive chemistry reacting with most ligands to give organometallic titanium complexes (89).

TITANIUM CARBOXYLATES

TITANIUM (III) CARBOXYLATES

Monocyclopentadienyltitanium (III) carboxylates

Organotitanium (III) carboxylates of formula CpTi(O_2CR)_2 have been prepared by a number of methods. Coutts and coworkers (90) made the carboxylates in two ways:

(i) Reaction of the sodium salt of an appropriate carboxylic acid with CpTiCl_2 in tetrahydrofuran. The product is purified by sublimation. The sublimation process causes the formation of some Cp_2Ti(O_2CR).
(ii) Reaction of CpTiCl$_2$ with the carboxylic acid in the presence of an amine. This method gave the required carboxylate in 70-90% yield.

Razuvaev$^{(91)}$ reported that CpTi(O$_2$CC$_6$H$_5$)$_2$ may be obtained by the reaction of benzoyl peroxide and (C$_5$H$_5$)$_2$Ti(C$_6$H$_5$)$_2$. The other products of the reaction were benzene and a polymeric ester.

Ebulliometric experiments indicate that CpTi(O$_2$CR)$_2$ (R = CH$_2$CH$_3$ or CH$_2$CH$_2$CH$_3$) is dimeric in benzene solution$^{(90)}$. Infra-red data indicates the presence of bridging carboxylates. X-ray structural measurements$^{(92)}$ show that CpTi(O$_2$CC$_6$H$_5$)$_2$ is a dimer with four bridging carboxylates.

\[
\text{(CpTi(O}_2\text{CC}_6\text{H}_5\text{)}_2)_2}
\]
The carboxylates are almost diamagnetic over the temperature range 100-300K however the more soluble species are sufficiently paramagnetic to cause line broadening in the NMR spectra. It has been proposed that the pairs of titanium atoms are antiferromagnetically coupled through a Ti (d\textsubscript{xy}) - Π (carboxylate) - Ti (d\textsubscript{xy}) superexchange pathway.

Bis(cyclopentadienyl) titanium (III) carboxylates

Bis (cyclopentadienyl) titanium(III) carboxylates are generally prepared by the reaction of Cp\textsubscript{2}TiCl and the sodium or potassium salt of an appropriate acid. Either air-free water or tetrahydrofuran may be used as solvent. An extensive range of dicarboxylates has been prepared by the reaction between a carboxylic acid and Cp\textsubscript{2}Ti(CO)\textsubscript{2}. All the compounds are very sensitive to air; the dicarboxylato compounds spontaneously inflame. Properties of some Cp\textsubscript{2}Ti(O\textsubscript{2}CR) complexes are shown in Table 1.6.

The structures of the pivalate and benzoate monocarboxylato species have been determined. The compounds are monomeric with a symmetrical bidentate chelating carboxylate ligand.

![Diagram of Bis(cyclopentadienyl) titanium (III) carboxylate](image)
<table>
<thead>
<tr>
<th>Compound</th>
<th>Colour</th>
<th>Melting Point °C</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP₂ Ti (O₂CH)</td>
<td>Green</td>
<td>92</td>
<td>93</td>
</tr>
<tr>
<td>CP₂ Ti (O₂CCH₃)</td>
<td>Blue</td>
<td>110</td>
<td>93</td>
</tr>
<tr>
<td>CP₂ Ti (O₂C(CH₂)₈CH₃)</td>
<td>Blue</td>
<td>5</td>
<td>93</td>
</tr>
<tr>
<td>CP₂ Ti (O₂C(CH₂)₁₆CH₃)</td>
<td>Blue</td>
<td>35</td>
<td>93</td>
</tr>
<tr>
<td>CP₂ Ti (O₂CC₆H₅)</td>
<td>Dark Green</td>
<td>83-85</td>
<td>93</td>
</tr>
<tr>
<td>[CP₂ Ti₂ (O₂CCH₂CH₂CO₂)</td>
<td>Grey Blue</td>
<td>245-250 (dec)</td>
<td>93</td>
</tr>
<tr>
<td>[CP₂ Ti₂ (O₂CC₅H₆CO₂)</td>
<td>Blue</td>
<td>-</td>
<td>94</td>
</tr>
<tr>
<td>[CP₂ Ti₂ (O₂CCH = CHCO₂) (cis)</td>
<td>Green</td>
<td>290-300 (dec)</td>
<td>93</td>
</tr>
<tr>
<td>[CP₂ Ti₂ (O₂CC₄H₆CO₂)</td>
<td>Blue</td>
<td>-</td>
<td>94</td>
</tr>
<tr>
<td>[CP₂ Ti₂ (O₂CCH = CHCO₂) (trans)</td>
<td>Mauve</td>
<td>260-262 (dec)</td>
<td>93</td>
</tr>
</tbody>
</table>
The structures of the dicarboxylato complexes [Cp2Ti] (O2CC6H5CO2) and [Cp2Ti]2 (O2CC4H6CO2) have been determined\(^\text{(94)}\). The molecules are dimers with one chelating carboxylate on each titanium, the molecule being held together by the alkyl or aryl backbone of the carboxylate ligand.

The monomeric benzoate shows curious magnetic behavior. In the solid state there is an antiferromagnetic exchange interaction. It was suggested this is due to intermolecular exchanges arising from the molecular packing in the solid\(^\text{(94)}\).

Titanium (III) chloro and tris-carboxylates

Titanium (III) chloride is reported to react with acetic anhydride to give the complexes TiCl2(O2CCH3) and TiCl(O2CCH3)\(^\text{(95)}\). The compounds are brown insoluble solids. The two compounds have different magnetic properties, the diacetate showing no field dependence and the monoacetate showing strong field dependence. It has been suggested that the acetates are bidentate bridging\(^\text{(95)}\).

Very little work has been done on titanium (III) triscarboxylates. It was reported in 1962 that Ti(O2CCH3)3 is formed in the reaction of formic acid with basic titanium carbonate\(^\text{(96)}\).

An unusual seven coordinate complex Ti2(C2O4)3.10H2O was reported by Fowles and coworkers\(^\text{(98)}\). The titanium atoms have a pentagonal bipyramidal geometry. The compound contains both chelating and bridging oxalates as well as coordinated water.
THE STRUCTURE OF Ti$_2$(C$_2$O$_4$)$_3$.10H$_2$O
TITANIUM (IV) CARBOXYLATES
Monocyclopentadienyltitanium (IV) carboxylates

The monocyclopentadienyltitanium (IV) carboxylates of the type CpTi(O_2CR)_3 are generally prepared by reaction of a metal salt of a carboxylic acid with CpTiCl_3. eg.:

\[\text{CpTiCl}_3 + 3 \text{Ag(O}_2\text{CR)} \rightarrow \text{CpTi(O}_2\text{CR)}_3 + 3 \text{AgCl} \]

Most work on these compounds has been performed by Soviet investigators. They report that the yellow or orange solids are soluble in polar organic solvents and are more thermally sensitive than the bis(cyclopentadienyl) titanium (IV) carboxylates(33).

Little structural evidence is available, but it has been suggested from infra-red evidence that both mono and bidentate carboxylate ligands are present(99).

Bis(cyclopentadienyl)titanium (IV) carboxylates

A large number of bis(cyclopentadienyl)titanium (IV) carboxylates of the type Cp_2Ti(O_2CR)_2 have been made. They are generally prepared by reaction of a silver or alkali metal carboxylate with Cp_2TiCl_2 in an organic solvent(100-102). An alternative method is the direct reaction of Cp_2TiCl_2 with the carboxylic acid in chloroform(103). eg.

\[\text{Cp}_2\text{TiCl}_2 + 2 \text{M(RCO}_2) \rightarrow \text{Cp}_2\text{Ti(RCO}_2)_2 + 2 \text{MCl} \]
\[\text{Cp}_2\text{TiCl}_2 + 2 \text{RCO}_2\text{H} \rightarrow \text{Cp}_2\text{Ti(RCO}_2)_2 + 2 \text{HCl} \]

The structures of the benzoate(104,105) and p-nitrobenzoate(106) derivatives have been determined by X-ray diffraction. In both complexes the
titanium atom has a distorted tetrahedral geometry being surrounded by two cyclopentadienyl rings and two unidentate carboxylate ligands.

It has been suggested that these complexes achieve an 18 electron configuration through Ti-O π bonding\(^\text{(104)}\). Molecular orbital calculations performed by Fay and coworkers show the existence of a strong π interaction between the Ia_1 orbital of the ($\eta^5 - \text{C}_5\text{H}_5)_2\text{Ti}^{2+}$ fragment and in-plane p orbitals of the coordinated benzoate oxygen atoms\(^\text{(104)}\). This is shown in the following diagram.
The structure of a second crystalline modification of the benzoate led to the proposal that one benzoate group bonds through a normal Ti-O σ bond but the Ti-O bond from the other benzoate has additional π-bond character.

Bis(methyl-cyclopentadienyl)titanium (IV) carboxylates have been prepared for a range of acids. It was suggested that for \(R = \text{CH}_3, \text{CH}_3\text{CH}_2, \text{CH}_3\text{CH}_2 \text{ and C}_6\text{H}_5 \) the carboxylate ligands are bidentate chelating and for \(R = \text{CH}_2\text{Cl} \) or \(\text{CHCl}_2 \) the carboxylate ligands are unidentate. This suggestion was made on the basis of infra-red evidence and thus may be suspect.

Titanium (IV) tetracarboxylates

Many attempts have been made to prepare \(\text{Ti(O}_2\text{CR})_4 \) species. Mateos claims to have made \(\text{Ti(O}_2\text{C}_6\text{H}_5)_4 \). No structural or chemical evidence is available for this compound.

Thiele and Panse prepared \(\text{Ti(O}_2\text{CC}_6\text{H}_5)_4 \) and \(\text{Ti(O}_2\text{CCH}_2\text{Cl})_4 \) by the reaction of \((\text{CH}_3)_4\text{Ti} \) and the appropriate acid. It was reported that the compounds contain both unidentate and bidentate carboxylate groups. In the reaction between \((\text{CH}_3)_4\text{Ti} \) and \(\text{CF}_3\text{CO}_2\text{H} \) reduction occurs and the titanium (III) species \(\text{Ti(O}_2\text{CCF}_3)_3 \) is produced.

It is claimed that \(\text{Ti(O}_2\text{CCH}_2\text{C}_6\text{H}_5)_4 \) may be prepared by the sequential addition of phenylacetic acid to titanium tetrachloride. Miller and coworkers claim to have prepared \(\text{Ti(O}_2\text{CCHBr}_2)_4 \) by the reaction of \(\text{TiCl}_4 \) and dibromoacetic acid.
Titanium (IV) monochlorotriscarboxylates

Jaura and coworkers claim to have prepared TiCl(O₂CCH₂C₆H₅)₃ by addition of phenylacetic acid to titanium tetrachloride\(^{(10)}\). The compound is reported to be a reddish-brown sticky mass. It was characterised by titanium and chlorine analysis.

Titanium (IV) bishalobiscarboxylates

The bisacetate was first prepared by Reichart in 1924\(^{(12)}\). The biscarboxylates are generally prepared by reaction of titanium tetrahalide with a slight excess of carboxylic acid\(^{(10,112,113,114)}\). A solvent may be used for some acids.

A wide range of TiCl₂(RCO₂)₂ type compounds has been made, (R = (CH₃)₃C, CH₃, C₂H₅, C₃H₈, CH₂Cl, CHCl₂, CCl₃, n-C₃H₇, n-C₄H₉, n-C₅H₁₁, C₆H₅ and C₆H₅CH₂). Amaudrut has prepared some bisbromobiscarboxylates for R = CH₃, C₂H₅, (CH₃)₃C, CH₂Cl, CH₂F and CHCl₂\(^{(115)}\).
A structure containing both chelating and bridging carboxylates was suggested based on comparison of the infra-red spectra of the dichlorides and dibromides\(^{(115,120)}\).

A dimeric structure with bridging carboxylates was suggested by Uh et al based on infra-red and NMR evidence\(^{(116)}\).

The reactions of TiCl\(_2\)(RCOO)\(_2\) species with alcohols\(^{(17)}\), POC\(_3\)\(^{(18)}\), and NOCl\(^{(13)}\) have been examined. Alcohols replace the carboxylate ligands in a two step substitution process giving TiCl\(_2\)(OR)(O\(_2\)CR) and TiCl\(_2\)(OR)\(_2\)\(^{(17)}\). POC\(_3\) causes the elimination of CH\(_3\)COC\(_1\) (for the diacetate) and the formation of TiOC\(_1\)(PO\(_2\)Cl\(_2\)) POC\(_3\)\(^{(18)}\). There is no evidence for the formation of an addition complex between TiCl\(_2\)(RCOO)\(_2\) complexes and NOCl\(^{(19)}\).

Titanium (IV) trischloromonocarboxylates

Titanium (IV) trischloromonocarboxylates, general formula TiCl\(_3\)(RCO\(_2\)), are usually prepared by the reaction of a carboxylic acid with excess titanium tetrachloride\(^{(113,114,118)}\).

The acetate is dimeric in benzene solution\(^{(121)}\). Amaudrut claims that the acetate exists in two forms. One form changing to the other on heating to 80 °C\(^{(121)}\). A structure containing chelating carboxylate groups has been suggested\(^{(121)}\).
The reactions of the monocarboxylates with NOCl\cite{121,122}, POC\textsubscript{3}\cite{18} and acid chlorides\cite{23} have been investigated. POC\textsubscript{3} causes the elimination of the acid chloride and production of TiOC\textsubscript{2}.2POC\textsubscript{3}. With NOCl the diacetate and the titanium tetrachloride.NOCl adduct are formed.

$$2 \text{TiCl}_3(\text{RCO}_2) + 2\text{NOCl} \rightarrow \text{TiCl}_4.2\text{NOCl} + \text{TiCl}_2(\text{RCO}_2)_2$$

Acid chlorides give the addition product [TiCl\textsubscript{3}(\text{RCO}_2)\text{RCOCl}]\textsubscript{2}.

Mixed titanium (IV) alkoxide/carboxylates

Titanium (IV) alkoxide/carboxylates are made by reacting the tetraalkoxide with an appropriate amount of carboxylic acid.

Most mixed alkoxide/carboxylates are based upon the tetra-isopropoxide. Mehrotra prepared (o-OC\textsubscript{6}H\textsubscript{4}CO\textsubscript{2})Ti(OPri\textsubscript{2}), (o-HOC\textsubscript{6}H\textsubscript{4}CO\textsubscript{2})\textsubscript{2}Ti (OPri) (O\textsubscript{2}CR) and (o-HOC\textsubscript{6}H\textsubscript{4}CO\textsubscript{2})Ti (OPri) (O\textsubscript{2}CR\textsubscript{2}) where R = C\textsubscript{11}H\textsubscript{23}, C\textsubscript{15}H\textsubscript{31} or C\textsubscript{21}H\textsubscript{43}\cite{124} On the basis of infra-red spectra it was suggested that the salicylic acids carboxylate group is bidentate and the fatty acids unidentate.

Soviet workers have made Ti(OPri\textsubscript{3})(O\textsubscript{2}C(CH\textsubscript{3})C\textsubscript{2} = CH\textsubscript{2}) and Ti (OPri\textsubscript{3}) (O\textsubscript{2}C(CH\textsubscript{3})C=CH\textsubscript{2}). H\textsubscript{2}C = C(CH\textsubscript{3})CO\textsubscript{2}CH(CH\textsubscript{3})\textsubscript{2}. The syntheses were performed in diethylether\cite{125}.
Titanium tetrachloride - carboxylic acid adducts

Adducts of the type TiCl₄. RCO₂H (R = C₆H₅, p-CH₃C₆H₄, 2, 4, 6-(CH₃)₃C₆H₂ and C₆H₅ CH = CH) were prepared by Susz and coworkers. Titanium tetrachloride and the acid were mixed in carbon tetrachloride (126). The acids are reported to be bonded to titanium through the carbonyl oxygen. This claim was made on the basis of the lowering of the carbonyl frequency of the acid in the infra-red spectra. No X-ray crystallographic evidence for this bonding mode was reported.

Mach and Drahorádová carried out an infra-red study on the interaction of titanium tetrachloride and carboxylic acids in solution. They found that both the complex TiCl₄.RCO₂H and the carboxylate TiCl₃(RCO₂) were formed. The proportion of each depended upon the acid strength, if a stronger acid was used the proportion of carboxylate increased. If a weaker acid was used the proportion of complex increased (127). They produced the reaction scheme below to summarise the interaction of TiCl₄ with carboxylic acids.

\[
\begin{align*}
\text{TiCl}_4 + \text{RCO}_2\text{H} & \quad \rightarrow \quad (\text{RCO}_2)\text{TiCl}_3 + \text{HCl} \\
\text{RCO}_2\text{H}.\text{TiCl}_4 & \quad \leftrightarrow \quad \text{R} = \text{CF}_3, \text{CCl}_3, \text{CF}_2\text{H}, \text{CCl}_2\text{H}, \text{CH}_3 \text{ or } \text{C}_2\text{H}_5.
\end{align*}
\]
CHAPTER 2

THE PREPARATION AND REACTIONS OF

TITANIUM (IV) TRIS(CHLORO)MONO(CARBOXYLATE) COMPLEXES
PREVIOUS SYNTHESSES OF TITANIUM CARBOXYLATES

A number of different methods have been used to prepare titanium (IV) carboxylate complexes. Amaudrut et al have obtained the monoacetate, propionate, butyrate, isobutyrate and pivalate by direct reaction of the acid and titanium tetrachloride. After a violent reaction the yellow products were washed with carbon tetrachloride and petroleum ether.\(^{113,121}\) The analyses of titanium and chlorine for the pivalate are high compared with the calculated values indicating the probable presence of unreacted titanium tetrachloride. This may not be surprising since in the present work we have also observed that any excess TiCl\(_4\) present in reaction products is held tenaciously even after extensive washing.

Kapoor and coworkers claim to have prepared a number of titanium (IV) monocarboxylates by reaction of excess titanium tetrachloride with a carboxylic acid in dichloromethane or carbon tetrachloride.\(^{114}\) The reactants were cooled before addition of the titanium tetrachloride in order to obtain a smooth reaction. The products, TiCl\(_3\)(RCO\(_2\)) \(R=CH_3, C_2H_5, C_3H_7, C_4H_9\) and \(C_5H_{11}\), were characterised by elemental analyses and infra-red spectra. The analysis for the acetate is accurate however the analyses for the other complexes vary slightly from the calculated values. The acetate is reported to be insoluble in non-polar organic solvents which agrees with results previously obtained.\(^{121,128}\) It appears that Kapoor and coworkers have prepared the monoacetate but the data for the other complexes do not completely justify claims for their preparation.

It is claimed that TiCl\(_3\)(C\(_6\)H\(_5\)CH\(_2\)CO\(_2\)) may be prepared by addition of a diethylether solution of phenylacetic acid to titanium tetrachloride at
The resulting yellowish brown sticky mass was only characterised by titanium and chlorine analyses. This claim for the preparation of TiCl$_3$ (C$_6$H$_5$CH$_2$CO$_2$) must be regarded with scepticism as the reported product is inhomogenous and no spectral evidence for its formation is offered.

Amaudruth reported that the biscarboxylates may be prepared by reaction of titanium tetrachloride with an excess of carboxylic acid at 0°C\(^{(120)}\). This reaction pathway has recently been investigated by D. Brown. The more recent work indicates biscarboxylates are not formed by reaction of titanium tetrachloride with excess carboxylic acid\(^{(129)}\). An alternative method of preparation used by Kapoor and coworkers is the combination of titanium tetrachloride and excess carboxylic acid in an organic solvent such as carbon tetrachloride or dichloromethane\(^{(114)}\).

Reasonable elemental analyses were obtained for the products of this reaction. The infra-red spectra contained three bands due to carboxylate stretches which agrees with reports by other authors\(^{(120)}\). However the infra-red spectra reported for the biscarboxylates are very similar to those reported for the monocarboxylates.

A recent paper reports that reaction of chlorosubstituted carboxylic acids with titanium tetrachloride produces only biscarboxylates even when the titanium tetrachloride is present in excess. Refluxing the reaction mixture in an attempt to prepare tris or tetracarboxylates gives the oxo derivative according to the equation below\(^{(114)}\).
This reaction scheme has some similarities to that proposed by Sartori for the interaction of titanium tetrachloride and excess trifluoracetic acid\(^{130}\).

\[
\text{TiCl}_4 + 4 \text{CF}_3\text{CO}_2\text{H} \rightarrow \text{TiO} (\text{O}_2\text{CF}_3)_2 + (\text{CF}_3\text{CO})_2\text{O} + 4\text{HCl}
\]

\[
(\text{CF}_3\text{CO})_2\text{O} + \text{HCl} \rightarrow \text{CF}_3\text{COCl} + \text{CF}_3\text{CO}_2\text{H}
\]

No explanation was offered for this behavior.

Swartz and coworkers reported the preparation of the bisacetate and bispropionate by reaction of excess carboxylic acid and titanium tetrachloride followed by stirring and standing at -10\(^\circ\)C for 12 hours\(^{131}\). Few analytical details were described.

It was claimed that the bisformate can be made by the reaction of titanium tetrachloride and formic acid at -78\(^\circ\)C\(^{132}\). It appears more likely that the complex TiCl\(_4\).\(n\)(HCO\(_2\)H) would be formed at such low temperatures. The same workers found that at higher temperature, hydrolysed products, TiCl\(_2\) (OH) (O\(_2\)CH) and Ti(OH)\(_2\) (O\(_2\)CH)\(_2\) are obtained\(^{132}\). This may be due to the presence of water in the reaction mixture. Attempts to prepare the bisformate using sodium formate also gave hydrolysed products\(^{132}\).

There are no reliable reports of the synthesis of titanium (IV) tris-carboxylates.
Many reports of the preparation of titanium (IV) tetracarboxylates have been published however some of these reports are over optimistic in their claims.

Jaura et al claim to have made the tetra(phenylacetate) by reaction of titanium tetrachloride with excess carboxylic acid dissolved in diethyl ether. The reaction mixture was then heated for several hours. This claim was made on the basis of one inaccurate titanium analysis so may be dismissed.

The tetra(acetate) was made by reaction of (CH₃)₄Ti with acetic acid. When (CH₃)₄Ti was reacted with halide-substituted-carboxylic acids some reduction to titanium (III) occurs. The products were characterised by elemental analyses, magnetic moments and infra-red spectra.

Gayer and coworkers prepared Ti(O₂CCH₃)₄. 2CH₃CO₂H by reaction of titanium tetrachloride, acetic acid and potassium acetate in ether. The product is a crystalline yellow solid.

Malhotra and coworkers reported the preparation of Ti(CHCl₂CO₂)₄ and Ti (CH₂ClCO₂)₄ by refluxing titanium tetrachloride with an excess of the halocarboxylic acid. Kapoor claims that refluxing titanium tetrachloride with an excess of CHCl₂CO₂H or CH₂ClCO₂H produces only OTi (O₂CR)₂ type derivatives. This reaction clearly requires re-investigation.
REACTIONS OF TITANIUM (IV) CARBOXYLATES

The reactions of titanium (IV) carboxylates with a limited range of ligands have been studied previously.

The reaction of the mono and biscarboxylates with POCl₃ was investigated by Amaudrut and coworkers. The monocarboxylate gave TiOCl₂, 2POCl₃ and the acid chloride. The products were identified by their infra-red spectra and elemental analyses.

Reaction of the biscarboxylates with POCl₃ produced [TiCl₃(PO₂Cl₂)POCl₃]₂, this compound was characterised by X-ray powder photographs, infra-red spectra and elemental analysis.

Viard and Devin treated the monoacetate with CH₃COCI to form the addition product [TiCl₃(CH₃CO₂)- CH₃COC₁]₂.

Nitrosyl chloride (NOCl) reacts with titanium monocarboxylates to give addition compounds of the formulation TiCl₃(RCO₂). NOCl. The biscarboxylates do not react with NOCl.

The reactions of titanium carboxylates with tertiary nitrogen bases have been studied. Kapoor and co-workers claim that both mono and biscarboxylates form 1:1 and 1:2 complexes with pyridine. Whether the 1:1 or 1:2 adduct is formed depends upon the size of the carboxylate alkyl group; when R = CH₃, CH₂Cl, CHCl₂ and CCl₃ the 1:2 adduct is formed however if R = C₂H₅, n - C₃H₇, n - C₄H₉ or n - C₅H₁₁ the 1:1 adduct is formed. In a separate report Kapoor claims that TiCl₂(O₂CH)₂ forms 1:2 addition compounds with pyridine, γ - picoline and quinoline. As the
original preparation of the bisformate is suspect the formation of the adduct appears unlikely.

Malhotra and co-workers investigated the reaction of the tetracarboxylates \(\text{Ti}(\text{CHCl}_2\text{CO}_2)_4 \) and \(\text{Ti}(\text{CH}_2\text{CICO}_2)_4 \) with pyridine. In both cases it was claimed that the addition compound \(\text{Ti}(\text{RCO}_2)_4 \cdot 2\text{py} \) was formed\(^{134,135}\). Again as the original preparation of the tetracarboxylate is disputed the formation of the adduct must be regarded as unproven.

I. GENERAL PREPARATIVE METHODS FOR TITANIUM (IV) MONOCARBOXYLATES

There are three main methods for making \(\text{TiCl}_3(\text{RCO}_2) \) species, these are:

(i) Direct reaction of titanium tetrachloride and the carboxylic acid. This method has the advantage that no solvent is used so the products are easily collected. The disadvantages of this method are that it is difficult to control the rate of the reaction, and the excess titanium tetrachloride is difficult to remove from the final product.

\[
\text{TiCl}_4 + \text{RCO}_2\text{H} \rightarrow \text{TiCl}_3(\text{RCO}_2) + \text{HCl}
\]

(ii) Reaction of titanium tetrachloride and carboxylic acid in an organic solvent. This method has the advantages that the reaction may be conveniently controlled by varying the concentrations of reactants and the products can be easily washed free of any titanium tetrachloride. However if the product is very soluble in the solvent it may be difficult to isolate.
(iii) Reaction of a metal carboxylate with titanium tetrachloride.

\[\text{TiCl}_4 + \text{M(RC}_2\text{O}) \rightarrow \text{TiCl}_3 (\text{RC}_2\text{O}_2) + \text{MCl} \]

Many metal carboxylates react with titanium tetrachloride to form titanium carboxylates. The carboxylates used are usually those of the alkali and alkaline earth metals although silver carboxylates have been utilised. The metal halide is formed and can generally be filtered off leaving the soluble titanium carboxylates.

In order to dissolve the metal carboxylate a polar solvent such as diethyl ether or ethyl acetate must be used\(^{(33)}\). These solvents form adducts with titanium tetrachloride thus complicating the reaction. In the present work it has been found that the metal halide can be difficult to separate particularly if the precipitate is colloidal.

In our work we have mainly used preparative method (ii). In general this method works well. Some carboxylates were made using metal carboxylates when reaction of \(\text{TiCl}_4\) and \(\text{RCO}_2\text{H}\) in a solvent did not give the required product.

The choice of solvent is very important. In many solvents the titanium carboxylates are extremely soluble which makes it difficult to isolate them in a pure form. Polar solvents such as tetrahydrofuran or ethyl acetate react with titanium (IV) compounds so cannot be used in the preparation of \(\text{TiCl}_3(\text{RCO}_2)\) species.

II. PREPARATION OF TITANIUM (IV)
TRIS(CHLORO)MONO(CARBOXYLATES)
Preparation of TiCl$_3$ (C$_6$H$_5$CO$_2$)

Benzoic acid is a white crystalline solid which is soluble in many organic solvents. Its pKa is 4.2 at 25°C.

The benzoate was made by the method previously described by Gordon(128). Excess titanium tetrachloride was added to a toluene solution of benzoic acid. The solution was heated for one hour and then cooled to precipitate the orange benzoate. The supernatant liquid was removed and the product washed with petroleum ether (b.p 60-80°C). It was then dried *in vacuo*.

The infra-red spectrum of TiCl$_3$ (C$_6$H$_5$CO$_2$) contains bands at 1600cm$^{-1}$, 1555cm$^{-1}$ and 1410cm$^{-1}$ in the carboxyl stretching region. The bands at 1600cm$^{-1}$ and 1500cm$^{-1}$ may be assigned to phenyl ring vibrations. The bands at 1555cm$^{-1}$ and 1410cm$^{-1}$ are assigned to ν(CO$_2$-)$_{asym}$ and ν(CO$_2$-)$_{sym}$ vibrations respectively. The Δ value, as described in chapter 1, is 145cm$^{-1}$. Comparison with the acetates indicates this value is consistent with the presence of bridging and or chelating carboxylate groups(57).

Bands at 410cm$^{-1}$, 375cm$^{-1}$, 320cm$^{-1}$, 290cm$^{-1}$ and 260cm$^{-1}$ are tentatively assigned to Ti-Cl vibrations. It is likely that these bands contain contributions from other infra-red active bands. Metal halide bridges are reported to give infra-red bands around 200cm$^{-1}$, often less than 200cm$^{-1}$ (56) so the band at 260cm$^{-1}$ may be due to a titanium-chlorine-titanium bridge.

The 1H NMR spectrum of TiCl$_3$ (C$_6$H$_5$CO$_2$) has resonances at 7.5 - 8.5p.p.m. due to the phenyl protons of the carboxylate ligand.
PREPARATION OF TiCl₃[(C₆H₅)₂(CH₃)CCO₂]

2.2-Diphenylpropanoic acid is a white powder which melts at 178°C. Its pKa is 5.77 at 25°C. Before use the acid was recrystallised from dichloromethane. The structure of 2,2-diphenylpropanoic acid is shown below:

The compound was prepared by reaction of excess titanium tetrachloride with the 2,2-diphenylpropanoic acid in an organic solvent. A number of solvents were tried, these included benzene, ethyl acetate, 60-80 petroleum ether, dichloromethane and diethyl ether. The best products were obtained from benzene solution and these products were extremely soluble in CH₂Cl₂, ethyl acetate, and diethyl ether. When the reaction was attempted in 60-80 petroleum ether an inhomogenous product containing black particles was obtained.

To obtain a solid product from the red benzene solution the solution was pumped to dryness giving an orange solid. The solid was then washed with petroleum ether (b.p. 60-80°C) and dried in vacuo at room temperature.

The 1H NMR spectrum of the orange product contains two resonances; a broad resonance at 7.0 - 7.4 p.p.m. due to the phenyl ring protons, and a singlet at 1.74 p.p.m. due to the methyl group of the carboxylate ligand.
The spectrum also showed some traces of weakly bound solvent which proved impossible to remove. The product contains ca. 1 solvent per 10 carboxylate groups.

The infra-red spectrum of the solid shows four bands in the carbonyl stretching region. These are at 1645cm⁻¹, 1600cm⁻¹, 1530cm⁻¹ and 1490cm⁻¹. The bands at 1600cm⁻¹ and 1490cm⁻¹ may be assigned as phenol ring vibrations. The band at 1645cm⁻¹ is assigned as $\nu(\text{CO}_2^-)_\text{asym}$ and the band at 1530cm⁻¹ as $\nu(\text{CO}_2^-)_\text{sym}$. The resulting Δ value is 115cm⁻¹. According to the criteria of Deacon and Phillips this indicates the presence of bridging and/or chelating carboxylate groups (57). Bands at 420cm⁻¹, 385cm⁻¹ and 330cm⁻¹ are assigned to Ti-Cl vibrations as they appear in the region in which such bands would be expected (56).

PREPARATION OF TiCl₃[(CH₃)₂CHCO₂]

Isobutyric acid (2-methylpropanoic acid) is a colourless liquid (b.p. 153.2°C) at room temperature. It's pKa is 4.79. Before use the acid was dried using P₂O₅.

The isobutyrate was prepared by reaction of excess titanium tetrachloride with a carbon tetrachloride solution of isobutyric acid. The initial yellow solution was stirred for 12 hours and pumped to dryness. The yellow solid formed was recrystallised from CCl₄.
The 1H NMR spectrum of the product contains two resonances, a multiplet centred at 2.23 p.p.m. due to the CH proton and multiple peaks around 0.8 - 1.2 p.p.m. due to the methyl groups. In isobutyric acid the two methyl groups are equivalent and produce a singlet in the 1H NMR spectrum. The multiple peaks found in the 1H NMR spectrum of TiCl$_3$[(CH$_3$)$_2$CHCO$_2$] imply either the existence of several species in solution or inequivalence of the carboxylate ligands methyl groups. The methyl groups should be relatively far away from the metal centres and other species so it appears several slightly different forms of TiCl$_3$[(CH$_3$)$_2$CHCO$_2$] exist in the solution. A similar effect occurs in the 1H NMR spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] and is discussed in chapter 3.

The infra-red spectrum of the yellow solid has three bands in the carboxyl stretching region. These are at 1650cm$^{-1}$, 1600cm$^{-1}$ and 1500cm$^{-1}$. The band at 1650cm$^{-1}$ is assigned as ν(CO$_2$)$^-$/asym and the band at 1500cm$^{-1}$ as ν(CO$_2$)$^-$/sym. The band at 1600cm$^{-1}$ may well contain contributions from both CO$_2$- vibrations and methyl deformations. The Δ value is 150cm$^{-1}$ which according to the Deacon and Phillips criteria is consistent with the presence of bridging and/or chelating carboxylate groups. Bands at 390cm$^{-1}$ and 320cm$^{-1}$ are assigned to Ti-Cl vibrations.
ATTEMPTED PREPARATION OF TiCl₃ (C₆H₅CH₂CO₂)

Phenylacetic acid is a white solid which melts at 77-78.5 °C. Its pKa is 4.5 (in 10% EtOH aq.). Its formula is C₆H₅CH₂CO₂H.

Two methods were used in attempts to prepare the phenylacetate derivative.

(i) The reaction of excess titanium tetrachloride with a solution of phenylacetic acid in an organic solvent. Solvents used were benzene, dichloromethane, diethyl ether and tetrahydrofuran. Previous reported preparations of TiCl₃(C₆H₅CH₂CO₂) used diethyl ether as solvent.¹¹⁰

(ii) Reaction of silver (or sodium) phenylacetate with titanium tetrachloride in diethyl ether.

After removal of solvent many of these reactions yielded only red-black oils. The metal carboxylate method produced black solids. Some orange and yellow solids were isolated from dichloromethane solution but the solids turned green or black almost immediately.

It appears that reduction of the titanium (IV) occurs with possible cleavage of the phenylacetic acid. It is difficult to determine how this reduction occurs due to the intractability of the products.

The reduction is so facile that Jaura's report¹⁰ of the synthesis of TiCl₃(C₆H₅CH₂CO₂) must be regarded as doubtful. The claim was based only on titanium and chlorine analyses of what appears to be an inhomogenous product obtained from diethyl ether solution.
Reaction of titanium tetrachloride with phenylacetic acid (from ref. 110).

\[\text{TiCl}_4 + 4\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2\text{H} \xrightarrow{\text{Et}_2\text{O}} \text{Ti}([\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2])_4 + 4\text{HCl} \]

Yellow
Crystalline, m.p. 70-72 °C

\[\text{TiCl}_4 + 3\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2\text{H} \xrightarrow{\text{Et}_2\text{O}} \text{TiCl}([\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2])_3 + 3\text{HCl} \]

Reddish-brown
Sticky Mass

\[\text{TiCl}_4 + 2\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2\text{H} \xrightarrow{\text{Et}_2\text{O}} \text{TiCl}_2([\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2])_2 + 2\text{HCl} \]

Reddish-viscous
Mass

\[\text{TiCl}_4 + \text{C}_6\text{H}_5\text{CH}_2\text{CO}_2\text{H} \xrightarrow{\text{Et}_2\text{O}} \text{TiCl}_3([\text{C}_6\text{H}_5\text{CH}_2\text{CO}_2]) + \text{HCl} \]

Yellow-brown
Sticky Hygroscopic
Mass
PREPARATION OF TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

Pivalic acid (2,2, dimethylpropanoic acid) is a colourless crystalline solid which melts at 35.5°C. Its pk$_a$ is 5.01 at 25°C. The structure of pivalic acid is shown below:

![Structure of Pivalic Acid]

The titanium pivalate was prepared by reaction of excess titanium tetrachloride with a benzene solution of pivalic acid. The red solution was heated for one hour and the volume of solvent reduced until yellow solid precipitated. The yellow solid was filtered off and washed with petroleum ether (b.p. 60-80°C). It may be recrystallised from benzene forming rod shaped yellow crystals.

The 1H NMR spectrum of the pivalate contains multiple resonances at 1.1 p.p.m. - 1.5 p.p.m characteristic of the protons of the methyl groups. This spectrum is discussed in detail in Chapter 3 (p95-101).

The infra-red spectrum of the product has four bands due to carboxyl groups. The bands at 1643 cm$^{-1}$ and 1553 cm$^{-1}$ are assigned to ν(CO$_2$)$_{\text{asym}}$ vibrations and the bands at 1508 cm$^{-1}$ and 1428 cm$^{-1}$ to ν(CO$_2$)$_{\text{sym}}$ vibrations. The resulting Δ values are 135 cm$^{-1}$ and 125 cm$^{-1}$ indicating the presence of two kinds of chelating and/or bridging carboxylate groups. Bands at 458 cm$^{-1}$, 403 cm$^{-1}$ and 323 cm$^{-1}$ are assigned to Ti-Cl vibrations.
The infra-red spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] is discussed in more detail in Chapter 3 (p95).

PREPARATION OF TiCl$_3$ (C$_9$H$_6$NCO$_2$)

2 - Quinolinecarboxylic acid is a white solid which melts at 155 - 157°C. Its pK_a at 25°C is 4.92. When heated the acid decomposes forming quinoline\(\text{I}^{37}\). The structure of 2 - quinolinecarboxylic acid is shown below:

![Structure of 2-quinolinecarboxylic acid](image)

This acid was used as it is possible that the nitrogen of the quinoline may coordinate to the titanium as well as the carboxyl group. It is also possible that the coordination of the nitrogen could force the formation of a monodentate carboxylate. Such a species would be of considerable interest as reaction with another metal centre could produce bimetallic compounds.

The carboxylate was prepared by reaction of excess titanium tetrachloride with 2 - quinolinecarboxylic acid in benzene. A yellow solid precipitated immediately. The suspension was then heated for six hours, the solid filtered off and washed with petroleum ether (b.p. 60 - 80°C). It was then dried *in vacuo* at room temperature.

The 1H NMR of the yellow solid has one resonance at 7.37 p.p.m. due to the ring protons.
The infra-red spectrum of the product contains four bands in the carboxylate stretching region. These are at 1615 cm⁻¹, 1600 cm⁻¹, 1585 cm⁻¹ and 1428 cm⁻¹. The bands at 1615 cm⁻¹ and 1600 cm⁻¹ are assigned as ring vibrations. The band at 1585 cm⁻¹ is assigned as \(\nu(CO_2^-)_{asym} \) and the band at 1428 cm⁻¹ as \(\nu(CO_2^-)_{sym} \). The resulting \(\Delta \) value is 157 cm⁻¹. This may indicate the presence of bridging and/or chelating carboxylate groups according to the Deacon and Phillips criteria(57).

Infra-red bands at 390 cm⁻¹ and 250 cm⁻¹ are tentatively assigned to Ti-Cl vibrations. The band at 415 cm⁻¹ is assigned to out of plane ring deformations and the band at 280 cm⁻¹ may be due to Ti-N vibrations(56).

It appears that the nitrogen is coordinated to the titanium centre. The carboxylate group may be bridging two titanium atoms. The insolubility of the product suggests it is a polymer. An X-ray structural study will be needed to discover the actual coordination of the compound however.

PREPARATION OF TiCl₃ (o-CH₃C₆H₄CO₂)

o - Toluic acid (2 - methylbenzoic acid) is a white powder which melts at 107 - 8.9°C. Its \(p_{ka} \) at 25°C is 3.9.

The o - toluate was prepared by addition of excess titanium tetrachloride to a toluene solution of o - toluic acid. An orange suspension formed and was heated at 100°C for two hours. The resulting yellow solid was filtered off, washed with petroleum ether, and dried in vacuo at room temperature.

The compound is insoluble in most organic solvents. It is slightly soluble in CH₂Cl₂. It was characterised by elemental analysis, 1H NMR spectra and
infra-red spectra. The analyses agree with the calculated values for TiCl₃ (o-CH₃C₆H₄CO₂).

The ¹H NMR spectrum of the yellow material contains two resonances. These are at 6.8 - 8.3 p.p.m. and 2.2 - 3.0 p.p.m. The resonances are broad because the compound was only sparingly soluble in CD₂Cl₂. The resonance at 6.8 - 8.3 p.p.m. is due to the protons on the phenyl ring. The resonance at 2 - 3 p.p.m. is due to the methyl group.

The infra-red spectrum of TiCl₃ (o-CH₃C₆H₄CO₂) has five bands in the carboxyl stretching region. These are at 1600 cm⁻¹, 1580 cm⁻¹, 1550 cm⁻¹, 1505 cm⁻¹ and 1340 cm⁻¹. The bands at 1600 cm⁻¹ and 1505 cm⁻¹ are assigned as ring vibrations. The band at 1550 cm⁻¹ is assigned as ν(CO₂⁻)asym and the band at 1340 cm⁻¹ as ν(CO₂⁻)sym. The resulting Δ value is 210 cm⁻¹. According to the Deacon and Phillips criteria this suggests that the carboxylate groups are in an unidentate bonding mode.

Bands at 420, 410, 380 and 270 cm⁻¹ are assigned to Ti-Cl vibrations. The bands at 420 cm⁻¹, 410 cm⁻¹ and 380 cm⁻¹ are probably due to terminal ν(Ti-Cl) stretching vibrations. The band at 270 cm⁻¹ has a contribution from bridging Ti-Cl vibrations.
PREPARATION OF TiCl₃(p-CH₃C₆H₄CO₂⁻)

p - Toluic acid (4 - methylbenzoic acid) is a white solid which melts at 181 °C. Its pKₐ is 4.37.

The p - toluate was prepared by addition of excess titanium tetrachloride to a benzene solution of p - toluic acid. The red solution was heated at 70 °C for 2 hours and the volume of solvent reduced. A yellow solid precipitated from the solution. The supernatant liquid was removed and the yellow solid washed with petroleum ether (b.p. 60 - 80 °C) and dried in vacuo at room temperature.

The ¹H NMR spectrum of the solid contains resonances at 7.39 p.p.m., 8.0 p.p.m. and 2.49 p.p.m. The resonances at 7.39 p.p.m. and 8.0 p.p.m. are due to the ring protons and the resonance at 2.49 p.p.m., is due to the methyl group.

The carbonyl stretching region in the infra-red spectrum of TiCl₃(p-CH₃C₆H₄CO₂⁻) contains five bands. These are at 1610cm⁻¹, 1580cm⁻¹, 1530cm⁻¹, 1505cm⁻¹ and 1410cm⁻¹. The bands at 1610cm⁻¹ and 1505cm⁻¹ are assigned as ring vibrations. The band at 1530cm⁻¹ may be assigned as ν(CO₂⁻)asym and the band at 1410cm⁻¹ as ν(CO₂⁻)sym. The resulting Δ value is 120cm⁻¹ which according to the Deacon and Phillips criteria indicates the presence of chelating and/or bridging carboxylate groups. This value contrasts with that of the ortho-toluic acid derivative (210cm⁻¹). The difference may be due to steric hindrance from the methyl group in the ortho compound preventing the carboxylate chelating or bridging.

Bands at 400cm⁻¹, 330cm⁻¹ and 295cm⁻¹ are assigned to Ti-Cl vibrations.
PREPARATION OF TiCl$_3$[C$_6$H$_2$(CH$_3$)$_3$CO$_2$]

2,4,6-Trimethylbenzoic acid (mesitoic acid) is a white powder which melts at 155°C. Its pK_a at 25°C is 4.43. The structure of 2,4,6-trimethylbenzoic acid is shown below:

![Structure of 2,4,6-trimethylbenzoic acid](image)

The carboxylate was prepared by addition of excess titanium tetrachloride to a dichloromethane solution of 2,4,6-trimethylbenzoic acid. The red solution was then heated for 5 hours and allowed to cool. Addition of petroleum ether (b.p. 100-120°C) caused an orange solid to precipitate. The solid was filtered off, washed with petroleum ether (b.p. 60-80°C) and dried in vacuo at room temperature. When benzene or toluene are used as solvent no solid products could be isolated.

The 1H NMR spectrum of the orange solid has two resonances due to TiCl$_3$[C$_6$H$_2$(CH$_3$)$_3$CO$_2$] and resonances due to slight contamination by petroleum ether. The resonances due to TiCl$_3$[C$_6$H$_2$(CH$_3$)$_3$CO$_2$] are at 6.87 p.p.m. and 2.26 p.p.m. The resonance at 6.87 p.p.m. is due to the ring protons and the resonance at 2.26 p.p.m. due to the three methyl groups. The petroleum ether gives small resonances centred around 1 p.p.m.

The infra-red spectrum of the product contains four bands in the carbonyl stretching region. These are at 1610 cm$^{-1}$, 1595 cm$^{-1}$, 1575 cm$^{-1}$ and
1485 cm⁻¹. The band at 1610 cm⁻¹ is assigned to ring vibrations. The band at 1595 cm⁻¹ may be assigned as \(\nu(CO_2)^{-}\text{asym} \) and the band at 1485 cm⁻¹ as \(\nu(CO_2)^{-}\text{sym} \). The resulting \(\Delta \) value is 110 cm⁻¹. According to the Deacon and Phillips criteria, this indicates the presence of bridging and/or chelating carboxylate groups. Bands at 405 cm⁻¹, 390 cm⁻¹ and 300 cm⁻¹ are assigned to Ti-Cl vibrations. This compound differs from the o-toluate in that despite having methyl groups next to the carboxyl group the \(\Delta \) value indicates the carboxylate is bridging and/or chelating. The \(\Delta \) value for the o-toluate indicates the carboxylate group is unidentate.

\(\alpha - \beta \) - UNSATURATED CARBOXYLATES

Some \(\alpha, \beta \) - unsaturated carboxylic acids have been used in our preparative experiments. These acids have a carbon-carbon double bond which has the potential to coordinate to the metal centre. This would produce very interesting structures. An \(\alpha, \beta \) - unsaturated carboxylic acid has the general structure shown below:

![Structure of an \(\alpha, \beta \) - unsaturated carboxylic acid]

Carboxylates have been prepared from cinnamic acid (3-phenyl-2-propenoic acid) and crotonic acid (\(trans \) - 2 - butenoic acid). The structures of these acids are shown overleaf:
The monocarboxylates were made by reaction of a slight excess of titanium tetrachloride with a dichloromethane solution of the acid at 0°C. Attempts were made to prepare the crotonate from benzene or toluene solution. Orange solids were obtained which contained solvent. The solvent could be driven off giving a yellow solid by heating the orange solid in a vacuum. Unfortunately the yellow solid proved to be inhomogenous.

Using dichloromethane as solvent, a yellow solid was obtained using crotonic acid and a red solid using cinnamic acid. The solids were obtained by reducing the volume of solution until precipitation occurred. The solid was filtered off, washed with hexane and dried in vacuo at room temperature.

Infra-red data for the compounds are reported in Table 2.1. The Δ values of 155cm⁻¹ for both compounds indicate the possible presence of chelating and/or bridging carboxylates(57).
Table 2.1: Infra-red data for the carboxylate stretching region of α, β - unsaturated carboxylates.

<table>
<thead>
<tr>
<th></th>
<th>TiCl₃(C₆H₅CH = CHCO₂)</th>
<th>TiCl₃(CH₃CH = CHCO₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(cm⁻¹)</td>
<td>(cm⁻¹)</td>
</tr>
<tr>
<td>C = C vibration</td>
<td>1620</td>
<td>1635</td>
</tr>
<tr>
<td>υ(CO₂⁻)asym</td>
<td>1545</td>
<td>1580</td>
</tr>
<tr>
<td>υ(CO₂⁻)sym</td>
<td>1390</td>
<td>1425</td>
</tr>
<tr>
<td>Δ</td>
<td>155</td>
<td>155</td>
</tr>
</tbody>
</table>

The ¹H NMR spectrum of the crotonate contains three resonances. These are at 2.2 p.p.m., 6.25 p.p.m. and 7.75 p.p.m. The resonance at 2.2 p.p.m. is due to the methyl group, the resonance at 7.75 p.p.m. can be assigned to the adjacent proton and the resonance at 6.25 p.p.m. is due to the CH proton next to the carboxyl group.

The ¹H NMR spectrum of the cinnamate has four resonances. These are at 7.7 p.p.m, 7.53 p.p.m., 7.3 p.p.m. and 6.65 p.p.m. The resonance at 6.65 p.p.m. is due to the CH proton next to the carboxyl group. The other CH proton resonates at 7.7 p.p.m. and the resonances at 7.53 p.p.m. and 7.3 p.p.m. are due to phenyl protons.

THE STRUCTURE OF Ti₂Cl₇ (CH₃CH=CHCO₂) (CH₃CH=CHCO₂H)

An attempt was made to prepare crystals of TiCl₃(CH₃CH=CHCO₂) suitable for an X-ray structural examination. The yellow titanium
dissolved in dichloromethane and long yellow needle-like crystals were grown by the liquid diffusion method using hexane as a precipitant. Upon solving the structure, the crystals were found to be Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$) (CH$_3$CH=CHCO$_2$H).

The new species had formed during the crystallisation of TiCl$_3$(CH$_3$CH=CHCO$_2$). It is possible that the crotonic acid/titanium tetrachloride adduct was present originally, and that this adduct reacted with the carboxylate forming the new species. However no evidence for the presence of TiCl$_4$. CH$_3$CH=CHCO$_2$H was found in the infra-red, 1H NMR spectra, or elemental analysis of the starting material. The Δ value found from the infra-red spectrum of the starting material was 155cm$^{-1}$ indicating the presence of bridging and/or chelating carboxylate ligands. The adduct would only give one infra-red band in the carbonyl stretching region and no Δ value would be observed.

An alternative explanation is the presence of very small amounts of water in the hexane precipitant. The water reacted with some of the titanium chloro species present forming oxo - compounds and HCl. The oxo - compounds precipitated, some white deposits were observed, and the HCl attacked carboxylate dimers forming the new species.

Ti$_2$Cl$_6$(CH$_3$CH=CHCO$_2$)$_2$ + HCl ------- > Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$) (CH$_3$CH=CHCO$_2$H)

TiCl$_3$[(CH$_3$)$_3$CCO$_2$]] has a trimeric structure in the solid state, and it has been proposed that the carboxylate dissociates into dimers and five coordinate species in solution (chapter 3). It is possible that the crotonate has similar behavior, when the initial dissociation takes place the molecule
becomes available for attack by HCl. A possible scheme for the reaction is shown in Figure 2.1:
Figure 2.1: A possible scheme for formation of
$\text{Ti}_2\text{Cl}_7(\text{CH}_3\text{CH}=\text{CHCO}_2) \ (\text{CH}_3\text{CH}=\text{CHCO}_2\text{H})$
The molecule Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$) (CH$_3$CH=CHCO$_2$H) is dimeric, the two titanium atoms being linked by a carboxylate bridge and two chlorine bridges. Each titanium has pseudo-octahedral coordination with all equatorial positions occupied by chlorine atoms. Two views of the structure and the atom numbering scheme are shown in Figures 2.2 and 2.3 and Tables 2.2 and 2.3 contain bond lengths and angles respectively for the complex.

One chlorine atom on Ti (2) is *trans* to an oxygen of the bridging carboxylate, the other oxygen atom of the carboxylate bridge is *trans* to the 'carbonyl' oxygen atom of the coordinated carboxylic acid.

The carboxyl carbon of the bridging carboxylate is almost trigonal, all bond angles are around 120°. The angles around the carboxyl carbon of the coordinated acid are closer to those of the free acid.(138) In particular the C(22) - C(21) - O(4) angle of 111.5° shows that O(4) is the hydroxyl oxygen. In the free acid this angle is 115°(138) The C(21) - O(4) bond length of 1.334Å compared to the C(21) - O(3) bond length of 1.222Å also indicates the presence of a proton on O(4).

The Ti$_2$Cl$_6$ central unit of the molecule is similar to that found in many titanium tetrachloride adducts such as [TiCl$_4$POCl$_3$]$_2$(139) or [TiCl$_4$.EtOAc]$_2$(82). The Ti-Cl-Ti angles of the bridges are less than the ideal 90° showing elongation of the bridges. The Cl-Ti-Cl angles of the terminal equatorial chlorines have opened to about 100° as predicted by the work of Hoffmann.(140). The terminal and bridging chlorines are staggered, presumably to avoid interaction with each other.
The complex has some similarities to the bimetallic compound TiMgCl$_5$(CH$_2$ClCO$_2$) (CH$_2$ClCOOCH$_2$H)$_3$ prepared by Bart and coworkers.12 The bimetallic compound has the same triply bridging unit composed of two chlorine bridges and a carboxylate bridge joining the titanium and magnesium atoms. All terminal chlorines in the bimetallic complex have approximately equal Ti-Cl bond lengths, however in the titanium crotonate compound the bond to the chlorine trans to the bridging carboxylate is longer than the others. This may indicate that this chlorine is Cl- from attack of HCl on Ti$_2$Cl$_6$(CH$_3$CH=CHCO$_2$)$_2$.
Figure 2.2: The Structure of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)
(CH$_3$CH=CHCO$_2$H)
Figure 2.3: The Structure of Ti$_2$Cl$_7$(CH$_3$CH=CHCO$_2$)(CH$_3$CH=CHCO$_2$H)
Table 2.2: Bond lengths (Å)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(1)-C1(1)</td>
<td>2.450(5)</td>
</tr>
<tr>
<td>Ti(1)-C1(11)</td>
<td>2.137(5)</td>
</tr>
<tr>
<td>Ti(1)-O(1)</td>
<td>1.636(10)</td>
</tr>
<tr>
<td>Ti(2)-C1(1)</td>
<td>2.524(5)</td>
</tr>
<tr>
<td>Ti(2)-C1(21)</td>
<td>2.265(5)</td>
</tr>
<tr>
<td>Ti(2)-C1(23)</td>
<td>2.189(5)</td>
</tr>
<tr>
<td>O(1)-C(11)</td>
<td>1.276(17)</td>
</tr>
<tr>
<td>O(3)-C(21)</td>
<td>1.222(23)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.461(23)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.532(26)</td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.333(22)</td>
</tr>
<tr>
<td>Ti(1)-C1(2)</td>
<td>2.494(5)</td>
</tr>
<tr>
<td>Ti(1)-C1(12)</td>
<td>2.205(5)</td>
</tr>
<tr>
<td>Ti(1)-O(3)</td>
<td>1.960(12)</td>
</tr>
<tr>
<td>Ti(2)-C1(2)</td>
<td>2.528(4)</td>
</tr>
<tr>
<td>Ti(2)-C1(22)</td>
<td>2.190(5)</td>
</tr>
<tr>
<td>Ti(2)-O(2)</td>
<td>2.008(11)</td>
</tr>
<tr>
<td>O(2)-C(11)</td>
<td>1.247(16)</td>
</tr>
<tr>
<td>O(4)-C(21)</td>
<td>1.334(20)</td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.264(23)</td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.456(24)</td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.499(23)</td>
</tr>
</tbody>
</table>

Table 2.3: Bond angles (deg.)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Angle (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1(1)-Ti(1)-C1(2)</td>
<td>88.2(2)</td>
</tr>
<tr>
<td>C1(2)-Ti(1)-C1(11)</td>
<td>172.6(2)</td>
</tr>
<tr>
<td>C(1)-Ti(1)-O(1)</td>
<td>85.5(3)</td>
</tr>
<tr>
<td>C(11)-Ti(1)-O(1)</td>
<td>95.1(4)</td>
</tr>
<tr>
<td>C(1)-Ti(1)-O(3)</td>
<td>85.4(3)</td>
</tr>
<tr>
<td>C(11)-Ti(1)-O(3)</td>
<td>92.2(4)</td>
</tr>
<tr>
<td>O(1)-Ti(1)-O(3)</td>
<td>168.5(4)</td>
</tr>
<tr>
<td>C(1)-Ti(2)-C1(21)</td>
<td>87.6(2)</td>
</tr>
<tr>
<td>C(1)-Ti(2)-C1(22)</td>
<td>90.3(2)</td>
</tr>
<tr>
<td>C(21)-Ti(2)-C1(22)</td>
<td>96.8(2)</td>
</tr>
<tr>
<td>C(2)-Ti(2)-C1(23)</td>
<td>91.4(2)</td>
</tr>
<tr>
<td>C(22)-Ti(2)-C1(23)</td>
<td>99.7(2)</td>
</tr>
<tr>
<td>C(2)-Ti(2)-O(2)</td>
<td>81.1(3)</td>
</tr>
<tr>
<td>C(22)-Ti(2)-O(2)</td>
<td>94.5(3)</td>
</tr>
<tr>
<td>Ti(1)-C1(1)-Ti(2)</td>
<td>96.9(2)</td>
</tr>
<tr>
<td>Ti(1)-O(1)-C1(11)</td>
<td>141.9(10)</td>
</tr>
<tr>
<td>Ti(1)-O(3)-C(21)</td>
<td>152.6(11)</td>
</tr>
<tr>
<td>O(1)-C(11)-C(12)</td>
<td>119.5(12)</td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>123.1(14)</td>
</tr>
<tr>
<td>O(3)-C(21)-O(4)</td>
<td>128.0(15)</td>
</tr>
<tr>
<td>O(4)-C(21)-C(22)</td>
<td>111.5(15)</td>
</tr>
<tr>
<td>C(22)-C(23)-C(24)</td>
<td>122.8(16)</td>
</tr>
</tbody>
</table>
ATTEMPTED PREPARATION OF [TiCl₃((CH₃)₃CCOS)]

Attempts were made to prepare [TiCl₃((CH₃)₃CCOS)]. A slight excess of titanium tetrachloride was added to a dichloromethane solution of thiopivalic acid. The resulting red solution was stirred for one hour after which a dark yellow solid precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (b.p. 60 - 80°C). It was then dried in vacuo.

The infra-red spectrum of the dark yellow solid has a band at 2520 cm⁻¹ due to S-H vibrations. The carbonyl band is at 1555 cm⁻¹. The shift of this band relative to the free acid indicates that the carbonyl oxygen is bonding to titanium.

The ¹H NMR spectrum of the solid contains a resonance at 0.9 p.p.m., due to the methyl groups.

It appears that the adduct TiCl₄(CH₃)₃CCOSH has been formed rather than the carboxylate TiCl₃((CH₃)₃CCOS). This is shown by the presence of S-H bands in the infra-red spectrum. The elemental analysis of the solid gives values close to those calculated for TiCl₄(CH₃)₃CCOSH. The shift of the carbonyl band in the infra-red spectrum is evidence that the acid binds to titanium through the carbonyl oxygen in a similar way to ethyl acetate in [TiCl₄. EtOAc]₂.
PREPARATION OF Ti[OCH(CH₃)₂]₃(C₆H₅CO₂)

Ti[OCH(CH₃)₂]₃(C₆H₅CO₂) was prepared by addition of Ti[OCH(CH₃)₂]₄ to a benzene solution of benzoic acid. The resulting colourless solution was heated at reflux temperature for eight hours. A cream coloured oil was produced. The oil was recrystallised from hexane to give a white solid.

The infra-red spectrum of the solid contains bands due to both alkoxide and carboxylate groups. Bands at 1320, 1135, 850, 815, 475 and 360 cm⁻¹ are due to the alkoxide groups. A band at 620 cm⁻¹ is due to υ(Ti-O) vibrations of the alkoxide groups. The band at 1420 cm⁻¹ may be assigned to υ(CO₂⁻)sym; υ(CO₂⁻)asym is assigned to either the band at 1560 cm⁻¹ or the band at 1540 cm⁻¹. The resulting Δ value is either 140 cm⁻¹ or 120 cm⁻¹. Bands at 1600 cm⁻¹ and 1490 cm⁻¹ are due to the aromatic ring of the benzoate. The possible Δ values are consistent with the presence of a bridging and/or chelating carboxylate group.(57)

The ¹H NMR spectrum of the product contains resonances at 8.2 p.p.m., 7.5 p.p.m., 5.09 p.p.m., and 1.3 p.p.m. The resonances at 8.2 p.p.m. and 5.09 p.p.m. are due to protons on the ring of the C₆H₅CO₂⁻ group. The resonance at 1.3 p.p.m. is due to the methyl groups of the alkoxides and the resonance at 5.09 p.p.m. is due to the CH groups of the alkoxides. The ratio of benzoate protons to iso-propoxide protons is 5:21 indicating that alkoxide and carboxylate groups are present in the ratio 3 alkoxides : 1 carboxylate.

The white solid is Ti[OCH(CH₃)₂]₃(C₆H₅CO₂). This is confirmed by its elemental analysis which gives values for Ti, C and H analyses very close to those calculated for TiC₁₆H₂₆O₅.
Cryoscopic molecular mass measurements show that the molecular mass of the compound in benzene solution increases with increasing concentration. (See Table 2.4).

The molecular mass of the monomeric Ti[OCH(CH3)2]3 (C6H5CO2) molecule is 345.9. It appears therefore that the complex dissociates in dilute solution and associates to form oligomers in more concentrated solutions.

Table 2.4 Variation of molecular mass with concentration for Ti(OPri)3(C6H5CO2)

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Molecular Mass</th>
<th>N x Monomer</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0214M</td>
<td>121.3</td>
<td>0.35</td>
</tr>
<tr>
<td>0.0972M</td>
<td>287.9</td>
<td>0.83</td>
</tr>
<tr>
<td>0.241M</td>
<td>516.91</td>
<td>1.49</td>
</tr>
</tbody>
</table>
III. REACTIONS OF TITANIUM (IV)
TRIS(CHLORO)MONO(CARBOXYLATES)

(i) Reactions of TiCl₃(RCO₂) with tetrahydrofuran.

The reaction of TiCl₃(RCO₂) (R = C₆H₅, (CH₃)₃C and o-C₆H₄C₂H₅) with THF was investigated by adding stoichiometric quantities of dry THF to solutions of the carboxylate. A variation was to dissolve the carboxylate in THF.

In the presence of excess dry THF the carboxylate groups are displaced and the adduct TiCl₄.2THF formed. The formation of the adduct was confirmed by ¹H NMR spectra and elemental analyses. The analyses for Ti, C, H and Cl of the yellow products agreed well with the calculated values for TiCl₄.2C₄H₈O. The ¹H NMR spectra contained resonances at 2.06 p.p.m. and 4.46 p.p.m. Both resonances are multiplets. No resonances were observed due to carboxylate groups. The resonances at 2.06 and 4.46 p.p.m. were due to the protons of coordinated tetrahydrofuran.

The addition of stoichiometric amounts of dry THF to the carboxylate solutions caused the formation of ill defined black or red oils. However if the THF contains the slightest trace of water then the oxo-compound [TiCl₂(RCO₂)THF]₂O is produced. The formation of this complex was confirmed by comparison of its infra-red and ¹H NMR spectra to those of a genuine sample of [TiCl₂(RCO₂)THF]₂O. The preparation of oxo-compounds is described in chapter 4. The carbon, hydrogen and titanium analyses of the product from the reaction of TiCl₃[(CH₃)₃CCO₂] with THF show it is [TiCl₂[(CH₃)₃CCO₂]THF]₂O.
It appears that titanium (IV) tris(chloro)monocarboxylates are vulnerable to attack by THF. In THF solution the carboxylate ligands are displaced and the adduct TiCl$_4.2$THF formed. The addition of water stabilises the carboxylate by formation of an oxygen bridge between the titanium centres(128) so the carboxylate ligands are not displaced, and [TiCl$_2$(RCO$_2$)THF]$_2$O is formed.

(ii) Reaction of TiCl$_3$(RCO$_2$) complexes with THF and phenols

In an attempt to prepare a phenoxide bridged variant of the oxo-compound [TiCl$_2$(RCO$_2$)L]$_2$O several titanium (IV) tris(chloro)mono(carboxylates) were reacted with THF and phenol. Oxo-compounds are discussed in detail in chapter 4.

The product of the reaction between [TiCl$_3$[(CH$_3$)$_3$CO$_2$], THF and phenol was an orange solid which analysed as [TiCl$_2$[(CH$_3$)$_3$CO$_2$]THF]$_2$OC$_6$H$_5$. The infra-red spectrum of the solid has bands at 1540cm$^{-1}$ and 1430cm$^{-1}$ due to ν(CO$_2$)asym and ν(CO$_2$)sym respectively. The resulting Δ value is 110cm$^{-1}$. This indicates the presence of bridging and/or chelating carboxylates(57).

Other bands of interest in the infra-red spectrum are at 760cm$^{-1}$, 460cm$^{-1}$, 390cm$^{-1}$ and 250cm$^{-1}$. The bands at 460cm$^{-1}$ and 250cm$^{-1}$ are assigned to Ti-Cl vibrations. The band at 390cm$^{-1}$ is assigned to Ti-O vibrations and the strong band at 760cm$^{-1}$ is assigned to Ti-OPh-Ti bridge vibrations.

The 1H NMR spectrum of the compound has resonances at 7.25 p.p.m., 4.4 p.p.m., 2.07 p.p.m., and 1.25 p.p.m. The broad resonance at 7.25 p.p.m., is due to the protons of the phenoxide group. The resonances at 4.4 p.p.m.,
and 2.07 p.p.m. are due to coordinated tetrahydrofuran and the resonance at 1.25 p.p.m. is due to the methyl protons of the carboxylate. The integrals show the ligands are present in the ratio $1 \text{C}_6\text{H}_5\text{O}^- : 2\text{THF} : 2(\text{CH}_3)\text{3CO}_2^-$.

Reaction of phenol, THF and $\text{TiCl}_3(\text{p-C}_6\text{H}_4\text{CO}_2)$ produces an orange solid. The 1H NMR spectrum of this solid contains resonances due to $\text{p-C}_6\text{H}_4\text{CO}_2^-$ (8.05 p.p.m., 7.9 p.p.m., 7.35 p.p.m., and 2.45 p.p.m.) and THF (4.75 p.p.m., 2.24 p.p.m.). No resonances due to $\text{C}_6\text{H}_5\text{O}^-$ were observed. It is difficult to detect the presence of phenoxide groups from the infra-red spectrum. Bonds at 1510 cm$^{-1}$ and 1415 cm$^{-1}$ are assigned to $\nu(\text{CO}_2^-)_{\text{sym}}$ and $\nu(\text{CO}_2^-)_{\text{asym}}$ respectively. The resulting Δ value of 95 cm$^{-1}$ according to the Deacon and Phillips criteria57 indicates the presence of chelating or both bridging and chelating carboxylate groups. The elemental analysis of the complex is inconclusive but from the spectral evidence it appears the complex is probably $[\text{TiCl}_2(\text{p-C}_6\text{H}_4\text{CO}_2)\text{THF}]_2\text{O}$.

Similarly reaction of $\text{TiCl}_3(\text{p-C}_6\text{H}_4\text{CO}_2)$, THF and $\text{C}_6\text{H}_2\text{Cl}_3\text{OH}$ produces an orange solid which analyses as $[\text{TiCl}_2(\text{p-C}_6\text{H}_4\text{CO}_2)\text{THF}]_2\text{O}$. The 1H NMR spectrum contains resonances at 8.05 p.p.m., 7.9 p.p.m., 7.35 p.p.m., 2.45 p.p.m., (due to $\text{p-C}_6\text{H}_3\text{C}_6\text{H}_4\text{CO}_2^- \)$ and 4.8 p.p.m. and 2.25 p.p.m., (due to THF). No resonances due to $\text{C}_6\text{H}_2\text{Cl}_3\text{O}^+$ were observed.

As before it proved difficult to detect the presence of $\text{C}_6\text{H}_2\text{Cl}_3\text{O}^+$ from the infra-red spectrum of the product. Bands at 1510 cm$^{-1}$ and 1415 cm$^{-1}$ are assigned to $\nu(\text{CO}_2^-)_{\text{asym}}$ and $\nu(\text{CO}_2^-)_{\text{sym}}$ respectively. The resulting Δ value of 95 cm$^{-1}$ may indicate the presence of either chelating or bridging and chelating carboxylates57.
(iii) Reaction of TiCl₃[(CH₃)₃CCO₂] with resorcinol (1,3-dihydroxybenzene.)

Resorcinol (C₆H₄(OH)₂) has two removeable hydrogen atoms and so may form chelated or bridged species with metals. Resorcinol was reacted with TiCl₃[(CH₃)₃CCO₂] in ethyl acetate solution to form a dark red solid.

The ¹H NMR spectrum of the solid has signals due to (CH₃)₃CCO₂⁻ (1.1 - 1.5 p.p.m.), EtOAc (4.25, 2.25, 1.2 p.p.m) and C₆H₄O₂⁻ (6.6 - 7.5 p.p.m.) in the ration 2:2:1.

The infra-red spectrum contains bands at 1650cm⁻¹ and 1540cm⁻¹ in the carboxylate stretching region. These bands are assigned to ν(CO₂⁻)asym and ν(CO₂⁻)sym respectively. The Δ value is 110cm⁻¹ which may indicate the presence of bridging and/or chelating carboxylate groups.

The elemental analysis of the solid agrees with the formulation \{TiCl₂[(CH₃)₃CO₂]EtOAc\}₂O₂C₆H₄. A possible structure for this complex is shown overleaf:
(iv) Reaction of TiCl₃(RCO₂) with acetylacetone

Acetylacetone (Hacac) is a very effective chelating ligand. It was decided to attempt the preparation of mixed acetylacetonate, carboxylate complexes in order to determine the effect of the chelating ligand upon the properties of the carboxylate.

Stirring TiCl₃[(CH₃)₃CCO₂] with Hacac in benzene for 15 hours produces an orange solid which from analytical evidence appears to be TiCl₂(CH₃COCHCOCH₃) [(CH₃)₃CCO₂].

The infra-red spectrum of the product contains a number of bands in the carbonyl stretching region. A band at 1670cm⁻¹ is assigned as ν(CO-₂)asym for the carboxylate ligand. Bands at 1420cm⁻¹ and 1320cm⁻¹ are assigned to CH₃ vibrations, a band at 1530cm⁻¹ is assigned as ν(C O) + ν(C C) for the acac ligand.

The ¹H NMR spectrum of the compound has resonances at 6.0 p.p.m., 2.2 p.p.m. and 1.1 - 1.5 p.p.m. These are in the ratio 1:6:9. The resonance at 6 p.p.m. is assigned to the CH of acac, the resonance at 2.2 p.p.m. to the
methyl protons of acac and the resonance at 1.1 -1.5 p.p.m. to the methyl protons of (CH₃)₃CCO₂⁻. The ¹H NMR spectrum indicates the presence of equal numbers of pivalate and acac ligands.

The orange solid was recrystallised and an X-ray single crystal structure determination attempted. The structure proved impossible to fully solve although the partial solution obtained showed that the complex had changed upon recrystallisation. The carboxylate ligands had been almost completely displaced and a titanium (IV) acetylacetonate species had formed.

Reacting TiCl₃[(CH₃)₃CCO₂] with two equivalents of Hacac produced a red powder. Comparison of the infra-red and ¹H NMR spectra of the powder to those of TiCl₂(acac)₂ showed the powder to be TiCl₂(acac)₂. TiCl₂(acac)₂ was prepared as described by Fay and Lowry."86": Titanium tetrachloride was reacted with a CH₂Cl₂ solution of Hacac, hexane being used to precipitate the red product. Equations for the two reactions producing TiCl₂(acac)₂ are shown below:

\[
\text{TiCl}_4 + 2 \text{CH}_3\text{COCH}_2\text{COCH}_3 \rightarrow \text{TiCl}_2(\text{CH}_3\text{COCHCOCH}_3)_2 + 2 \text{HCl}
\]

\[
\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2] + 2 \text{CH}_3\text{COCH}_2\text{COCH}_3 \rightarrow \text{TiCl}_2(\text{CH}_3\text{COCHCOCH}_3)_2 + \text{HCl} + (\text{CH}_3)_3\text{CCO}_2\text{H}
\]

In general the reaction of TiCl₃(RCO₂) (R = C₆H₅, o-CH₃C₆H₄) with Hacac produced a mixture of TiCl₂(acac)₂ and the parent carboxylic acid. The displacement of the carboxylate occurs very quickly, in the case of the benzoate being complete after ten minutes.
TiCl₂(acac)₂ will not react with carboxylic acids even after heating in benzene for over 48 hours. A mixture of the bis-acetylacetonate and carboxylic acid is obtained from the reaction vessel. The carboxylic acid may be recovered unchanged by washing with hexane.

These reactions are summarised in Table 2.5.

The formation of TiCl₂(acac)₂ rather than mixed acetylacetonate/carboxylate compounds is probably promoted by the chelate effect. Mixed RCO₂-/acac complexes would probably be oligomers but TiCl₂(acac)₂ is a monomer. Therefore the formation of monomeric TiCl₂(acac)₂ from oligomeric TiCl₃(RCO₂) species increases entropy. Using the thermodynamic relationships:

\[
\Delta G^o = -RT\ln \beta
\]

\[
\Delta G^o = \Delta H^o - T\Delta S^o
\]

(\(\beta\) = equilibrium constant)

It can be seen that the increase in entropy will cause \(\Delta G^o\) to become more negative, increasing \(\log \beta\) and favouring the formation of TiCl₂(acac)₂ over mixed acac/RCO₂- complexes.

(v) Reactions of TiCl₃(RCO₂) with dibenzoylmethane

Dibenzoylmethane (C₆H₅COCH₂COC₆H₅) is a chelating ligand similar to acetylacetone. The two phenyl rings make it considerably more bulky than acetylacetone.
Table 2.5: Reactions of TiCl$_3$(RCO$_2$) species with acetylacetone.

<table>
<thead>
<tr>
<th>Starting Materials</th>
<th>Reaction Time</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCl$_3$(Me$_3$CCO$_2$) + acac</td>
<td>15h</td>
<td>TiCl$_3$(acac)(Me$_3$CCO$_2$) changes form on recrystallization</td>
</tr>
<tr>
<td>TiCl$_2$(acac)$_2$ + C$_6$H$_5$CO$_2$H in C$_6$H$_6$</td>
<td>reflux 48h</td>
<td>mixture of benzoic acid and TiCl$_2$(acac)$_2$</td>
</tr>
<tr>
<td>TiCl$_2$(acac)$_2$ + C$_6$H$_5$CO$_2$H in CH$_2$Cl$_2$</td>
<td>reflux 3h</td>
<td>mixture of benzoic acid and TiCl$_2$(acac)$_2$</td>
</tr>
<tr>
<td>TiCl$_3$(Me$_3$CCO$_2$) + 2Hacac in C$_6$H$_6$</td>
<td>1/2h</td>
<td>TiCl$_2$(acac)$_2$</td>
</tr>
<tr>
<td>TiCl$_3$(C$_6$H$_5$CO$_2$) + Hacac in C$_6$H$_6$</td>
<td>15h</td>
<td>TiCl$_2$(acac)$_2$ + benzoic acid</td>
</tr>
<tr>
<td>TiCl$_3$(o-CH$_3$C$_6$H$_4$CO$_2$) + Hacac in toluene</td>
<td>36h</td>
<td>TiCl$_2$(acac)$_2$ + o-CH$_3$C$_6$H$_4$CO$_2$H</td>
</tr>
<tr>
<td>TiCl$_3$(C$_6$H$_5$CO$_2$) + Hacac in benzene</td>
<td>10 minutes</td>
<td>TiCl$_2$(acac)$_2$ + benzoic acid</td>
</tr>
</tbody>
</table>
The reactions of TiCl$_3$(RCO$_2$) _R_ = (CH$_3$)$_3$C, o-CH$_3$C$_6$H$_4$ and C$_6$H$_5$) with dibenzoylmethane produce a red powder. The infra-red spectra of the red powders produced using different carboxylates were identical. This indicates that the same product is formed whatever carboxylate is reacted with dibenzoylmethane.

Bands at 1600cm$^{-1}$ and 1585cm$^{-1}$ are assigned to aromatic ring vibrations. A band at 1530cm$^{-1}$ is assigned to ν(C=O) + ν(C-C) of dibenzoylmethane.

No resonances due to carboxylate ligands are seen in the 1H NMR of the product. Resonances are observed at 8.1 p.p.m., 7.5 p.p.m. (due to C$_6$H$_5$ protons) and 1.25 p.p.m. (due to CH protons).

Comparison of the F.A.B. mass spectra of the complexes to those of a genuine sample of TiCl$_3$(C$_6$H$_5$COCHCOC$_6$H$_5$) showed the products were all TiCl$_3$(C$_6$H$_5$COCHCOC$_6$H$_5$). The TiCl$_3$(C$_6$H$_5$COCHCOC$_6$H$_5$) was prepared by the reaction of titanium tetrachloride and dibenzoylmethane in dichloromethane solution.

The dibenzoylmethane displaces the carboxylate ligand forming the complex and the free acid. The displacement apparently occurs since the chelate effect makes the dibenzoylmethane complex energetically favourable compared to the carboxylate. The bis-complex is probably not formed as the dibenzoylmethane ligand is too sterically hindering to allow its facile formation.
\[\text{TiCl}_3(\text{RCO}_2) + \text{C}_6\text{H}_5\text{COCH}_2\text{COC}_6\text{H}_5 \rightarrow \text{TiCl}_3(\text{C}_6\text{H}_5\text{COCHCOC}_6\text{H}_5) + \text{RCO}_2\text{H} \]

(iv) Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with triphenylphosphine

The reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with triphenylphosphine in dichloromethane solution produced a brown solid. Recrystallisation isolated blue, brown and orange solids and a green solution. The 1H NMR spectra of all the solids contained broad resonances due to the Ph$_3$P group. The solids proved to be inhomogenous and attempts both to purify and analyse them proved unsuccessful.

(vii) Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with pyridine

The 1:1 reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] and pyridine produces a yellow solid. This solid is only soluble in pyridine. The infra-red spectrum of the solid contains bands at 1640 cm$^{-1}$ and 1485 cm$^{-1}$ due to ν(CO$_2$)$_{\text{asym}}$ and ν(CO$_2$)$_{\text{sym}}$ respectively. A band at 240 cm$^{-1}$ is assigned as a Ti-py vibration and a band at 350 cm$^{-1}$ is assigned as a Ti-Cl vibration. The band at 650 cm$^{-1}$ is assigned to pyridine in-plane ring deformations; it occurs at 604 cm$^{-1}$ in free pyridine$^{(56)}$. The band at 440 cm$^{-1}$ is assigned to pyridine out-of-plane ring deformation; it occurs at 405 cm$^{-1}$ in free pyridine$^{(56)}$. The bands due to pyridine are in general stronger than those due to the carboxylate in the infra-red spectrum.

The 2:1 reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] and pyridine produces a yellow solid. This solid is soluble in boiling CH$_3$CN and in pyridine. No bands due to carboxylate were observed in the infra-red spectrum of the solid. A band at 370 cm$^{-1}$ is assigned to Ti-Cl vibrations.
It appears that in both 1:1 and 1:2 reactions of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with pyridine that the carboxylate is displaced and an insoluble pyridine complex formed. The product from the 1:1 reaction still contained some carboxylate however.

This result is interesting as Kapoor and coworkers claim to have prepared the TiCl$_3$(CH$_3$CO$_2$)$_2$py adduct and the TiCl$_3$(RCO$_2$)$_2$py adducts where R= C$_2$H$_5$, C$_3$H$_7$, C$_4$H$_9$ and C$_5$H$_{11}$. The behavior of the titanium (IV) pivalate with pyridine appears to be different to that of the carboxylates studied by Kapoor.

Infra-red Spectra of titanium (IV) carboxylates

Carboxylate stretching frequencies and Δ values for a range of TiCl$_3$(RCO$_2$) species are shown in Table 2.6.

Most of the values are between 120 - 160cm$^{-1}$ indicating the presence of chelating and/or bridging carboxylates. TiCl$_3$(o-CH$_3$C$_6$H$_4$CO$_2$) has a Δ value of 210cm$^{-1}$ and TiCl$_3$[C$_6$H$_2$(CH$_3$)$_3$CO$_2$] has a Δ value of 110cm$^{-1}$. This may be due to steric considerations as both derivatives have ortho methyl groups which may influence the CO$_2$- group.
Table 2.6: Infra-red Spectra of TiCl₃(RCO₂).

<table>
<thead>
<tr>
<th>Carboxylate</th>
<th>(CO₂)asym (cm⁻¹)</th>
<th>(CO₂)sym (cm⁻¹)</th>
<th>(cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiCl₃(C₆H₅CO₂)</td>
<td>1555</td>
<td>1410</td>
<td>145</td>
</tr>
<tr>
<td>TiCl₃[(C₆H₅)₂(CH₃)CCO₂]</td>
<td>1645</td>
<td>1530</td>
<td>115</td>
</tr>
<tr>
<td>TiCl₃[(CH₃)₂CHCO₂]</td>
<td>1650</td>
<td>1500</td>
<td>150</td>
</tr>
<tr>
<td>TiCl₃[(CH₃)₃CCO₂]</td>
<td>1643, 1553</td>
<td>1508, 1428</td>
<td>135, 125</td>
</tr>
<tr>
<td>TiCl₃(C₉H₆NCO₂)</td>
<td>1585</td>
<td>1428</td>
<td>157</td>
</tr>
<tr>
<td>TiCl₃(o-CH₃C₆H₄CO₂)</td>
<td>1550</td>
<td>1340</td>
<td>210</td>
</tr>
<tr>
<td>TiCl₃(p-CH₃C₆H₄CO₂)</td>
<td>1530</td>
<td>1410</td>
<td>120</td>
</tr>
<tr>
<td>TiCl₃[C₆H₂(CH₃)₃CO₂]</td>
<td>1595</td>
<td>1485</td>
<td>110</td>
</tr>
<tr>
<td>TiCl₃(C₆H₅CH=CHCO₂)</td>
<td>1545</td>
<td>1390</td>
<td>155</td>
</tr>
<tr>
<td>TiCl₃(CH₃CH=CHCO₂)</td>
<td>1580</td>
<td>1425</td>
<td>155</td>
</tr>
</tbody>
</table>
CONCLUSIONS

Titanium (IV) carboxylates may be prepared by reaction of titanium tetrachloride with carboxylic acids in an organic solvent. Some carboxylates are difficult to prepare because of problems with solubility and side reactions. If there is a possibility of interaction between the titanium and the alkyl chain of the acid, reduction of the titanium may occur.

The reaction of titanium (IV) tris(chloro)monocarboxylates with strong donor ligands results in the displacement of the carboxylate ligand and formation of a complex. If the ligands are good chelating agents again the carboxylate will be displaced and a chelate complex formed.

The scrambling of the carboxylate ligands in solution involves the titanium-oxygen bonds breaking and reforming. This may make the titanium vulnerable to attack by other ligands. Once another ligand has bonded to the titanium the carboxylate is unable to displace it in order to reform the original complex.

The reactions with phenol and resorcinol show that an oxygen bridge is preferred in complexes of the type [$\text{TiCl}_2(\text{RCO}_2)\text{L}_2\text{Bd}$] (where Bd is a bridging atom or molecule). However if no water is present alkoxy or dialkoxy bridges may be formed.
CHAPTER 3
STRUCTURE AND SPECTRAL PROPERTIES
OF
TiCl₃[(CH₃)₃CCO₂]
Structure and Spectral Properties of TiCl₃[(CH₃)₃CCO₂]

Introduction

The molecular structure of titanium trischloromonocarboxylate species has not been previously established. Knowledge of the molecular structure would be useful in the explanation of the spectral and physical properties of such species. Therefore it was decided to perform a single crystal x-ray diffraction study on TiCl₃[(CH₃)₃CCO₂], and to use the result in the interpretation of the spectral and physical properties of this complex.

Crystals of TiCl₃[(CH₃)₃CCO₂] suitable for examination by diffraction methods were very difficult to grow. The crystals were often twinned making them unusable. The crystals were mounted in thin glass tubes under argon. If the crystals were mounted under nitrogen they decomposed when exposed to the x-ray beam.

Amaudrut and coworkers performed infra-red and cryoscopic molecular mass studies upon TiCl₃(CH₃CO₂)\(^{(121)}\). They assigned three bands in the infra-red spectrum to COO vibrations, 1610cm\(^{-1}\), 1490cm\(^{-1}\) and 1395cm\(^{-1}\). It was claimed that the complex was monomeric in dilute benzene solution and dimeric in concentrated benzene solution. From these measurements Amaudrut proposed the structure below:
The structure is linked by chlorine bridges and contains bidentate chelating carboxylates. The carboxylates will be strained in this configuration as the OCO angle will be forced to decrease. This will increase interactions between orbitals on the two oxygens thus inducing strain into the OCO unit.

Studies on titanium(IV) bischlorobis(carboxylate) species

No single crystal X-ray diffraction studies of titanium (IV) bischlorobis(carboxylate) species have been performed. By comparison of the infra-red spectra of the bis-bromo and bis-chloro carboxylates Amaudrut et al.\(^{15}\) claim that the halides in these species are *trans* to each other and that the titanium atoms have a \(\text{MO}_4\text{X}_2\) pseudo-octahedral co-ordination. Cryoscopic molecular mass measurements show the complexes are dimeric in benzene solution. Amaudrut suggested the structure shown in Figure 3.1 for \(\text{TiX}_2(\text{RCO}_2)_2\) complexes.

![Figure 3.1: A possible structure for TiX2(RCO2)2 complexes.](image-url)
Solid state infra-red spectrum of TiCl₃[(CH₃)₃CCO₂]

The infra-red spectrum and band assignments for TiCl₃[(CH₃)₃CO₂] are reported in Table 3.1. The assignments are tentative being based upon comparison with the free acid and related metal carboxylate species.

The most significant feature of the infra-red spectrum is the four bands due to \(\nu(\text{COO}^-)\). These may be paired to give \(\Delta\) values. The band at 1643 cm\(^{-1}\) pairs with the one at 1508 cm\(^{-1}\) and the band at 1553 cm\(^{-1}\) pairs with the band at 1428 cm\(^{-1}\).

Using the formula:

\[
\Delta = \nu(\text{COO}^-)_{\text{asym}} - \nu(\text{COO}^-)_{\text{sym}}
\]

gives \(\Delta\) values of 135 cm\(^{-1}\) and 125 cm\(^{-1}\) respectively. These values are consistent with the presence of chelating and/or bridging carboxylates\(^{57}\).

1H NMR Spectrum of TiCl₃[(CH₃)₃CO₂]

The proton NMR spectrum of free pivalic acid contains two peaks, one at 12.0 p.p.m. due to the hydroxyl proton and one at 1.2 p.p.m. due to the nine equivalent protons of the tertiary butyl group.

In the spectrum of TiCl₃[(CH₃)₃CCO₂)] (Figure 3.2) there is no peak at 12 p.p.m. and the singlet at 1.2 p.p.m. due to the tertiary butyl group has changed to a complex multiplet centred around 1.15 p.p.m. The multiplet contains at least nine peaks. The largest of these is at 1.16 p.p.m.
By comparison of the spectrum with those of petroleum ether (b.p. 60-80°C) and high vacuum grease it appears that the multiplet is not due to these impurities. It has to be pointed out that this compound did produce variable results in the 1H n.m.r. spectra recorded. The spectrum shown in Figure 3.2 is typical of the kind of spectrum obtained. The resonances of the protons of the alkyl group were often broad and unresolved when the spectrum was run in CDCl$_3$ solution at 400 MHz. Although no satisfactory explanation can be offered for this behaviour, it was apparent that better defined spectra were obtained when the samples were made up using C$_6$D$_5$CD$_3$ for the variable temperature spectra (Figure 3.3). The spectra are discussed further on page 111.
Table 3.1 Infra-red Spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

Bands occur at: (all in cm$^{-1}$)

1643, 1553, 1508(s), 1488(s), 1428(s), 1371(s), 1233(s), 1033, 938(w), 778(w), 613(s), 496, 458, 403(s), 323(sh).

Assignments:

<table>
<thead>
<tr>
<th>Frequency (cm$^{-1}$)</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1643 cm$^{-1}$</td>
<td>ν(COO$^-$)$_{\text{asym}}$</td>
</tr>
<tr>
<td>1553 cm$^{-1}$</td>
<td>ν(COO$^-$)$_{\text{asym}}$</td>
</tr>
<tr>
<td>1508 cm$^{-1}$</td>
<td>ν(COO$^-$)$_{\text{sym}}$</td>
</tr>
<tr>
<td>1488 cm$^{-1}$</td>
<td>C-H deformations</td>
</tr>
<tr>
<td>1428 cm$^{-1}$</td>
<td>ν(COO$^-$)$_{\text{sym}}$</td>
</tr>
<tr>
<td>1371 cm$^{-1}$</td>
<td>due to C(CH$_3$)$_3$ vibrations</td>
</tr>
<tr>
<td>1233 cm$^{-1}$</td>
<td>C-O stretching</td>
</tr>
<tr>
<td>613 cm$^{-1}$</td>
<td>O-C=O bending</td>
</tr>
<tr>
<td>496 cm$^{-1}$</td>
<td>O-C = O in plane bending</td>
</tr>
<tr>
<td>403 cm$^{-1}$</td>
<td>terminal Ti-Cl stretching</td>
</tr>
</tbody>
</table>
Figure 3.2: The 1H NMR Spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]
Variable temperature 1H NMR of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

In order to investigate the multiple peak in the 1H NMR spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] the 1H NMR spectrum of the complex was obtained at various different temperatures. The temperatures ranged from 253K to 373K. The spectra are shown in Figure 3.3.

At 253K the individual peaks may be clearly distinguished, in three main groupings centred around 1.1 p.p.m., 1.25 p.p.m. and 1.36 p.p.m. The peak at 1.36 p.p.m. broadens as the temperature is increased and the peaks at 1.1, 1.25 p.p.m. disappear. The sharp peak around 1.15 p.p.m. grows in intensity.

The rise in temperature causes all of the peaks to shift downfield slightly. For example an increase in temperature from 293K to 373K causes peak (A) to move from 1.15 to 1.22 p.p.m.

In the spectrum run at 373K peaks (B), (C) and (D) have almost coalesced. It is expected at higher temperatures that the spectrum would consist of only two peaks, one around 1.4 p.p.m. and the other around 1.25 p.p.m. The integrals show 4.5 - 5.0 times more protons are responsible for the broad peaks at 1.4 p.p.m. than for the sharp peak at 1.22 p.p.m.

1H NMR decoupling experiments.

It is possible that the multiple peak in the 1H NMR spectrum of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] is caused by proton spin-spin coupling. If it is then irradiation at the frequency of one peak will decouple it from the others and should simplify the spectrum.
No changes in the spectrum were observed when the peaks were decoupled. Therefore the multiple peaks do not arise from proton spin-spin coupling.

13C NMR of TiCl₃[(CH₃)₃CCO₂]

The proton decoupled 13C spectrum of TiCl₃[(CH₃)₃CCO₂] contains three resonances:

- 189.58 p.p.m. CO₂- group
- 128.16 p.p.m. tertiary carbon
- 26.71 p.p.m. methyl carbons

In the 13C spectrum of free pivalic acid the carboxyl resonance occurs at 185 p.p.m. The observed 4.58 p.p.m. shift (to 189.58 p.p.m.) in the spectrum of the complex indicates formation of the carboxylate anion. The other resonances occur at similar frequencies to those of the free acid.
Figure 3.3: Variable temperature 1H NMR spectra of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]
Electron impact mass spectrum of TiCl$_3[(\text{CH}_3)_3\text{CCO}_2]$

The mass spectrum of TiCl$_3[(\text{CH}_3)_3\text{CCO}_2]$ is reported in Table 3.2. The mass spectrum of pivalic acid is included for comparison.

The mass spectrum is assigned as follows:

<table>
<thead>
<tr>
<th>m/z</th>
<th>Ion</th>
</tr>
</thead>
<tbody>
<tr>
<td>343</td>
<td>{TiCl$_3[(\text{CH}_3)_3\text{CCO}_2]}(\text{C}_3\text{H}_5\text{CO}_2)}^+</td>
</tr>
<tr>
<td></td>
<td>shows typical 3 chlorine isotope pattern</td>
</tr>
<tr>
<td>190</td>
<td>TiCl$_4^+$</td>
</tr>
<tr>
<td>153</td>
<td>TiCl$_3^+$</td>
</tr>
<tr>
<td>118</td>
<td>TiCl$_2^+$</td>
</tr>
<tr>
<td>83</td>
<td>TiCl$^+$</td>
</tr>
<tr>
<td>57</td>
<td>C$_4$H$_9^+$</td>
</tr>
<tr>
<td>41</td>
<td>C$_3$H$_5^+$</td>
</tr>
<tr>
<td>36</td>
<td>HCl$^+$</td>
</tr>
</tbody>
</table>

The ion \{TiCl$_3[(\text{CH}_3)_3\text{CCO}_2]\}(\text{C}_3\text{H}_5\text{CO}_2)\}^+ is formed by the loss of TiCl$_3$ and CH$_4$ from a Ti$_2$Cl$_6[(\text{CH}_3)_3\text{CCO}_2]_2$ fragment. The fragmentation

\[\text{C}_4\text{H}_9^+ \rightarrow \text{C}_3\text{H}_5^+ + \text{CH}_4 \quad 57 \rightarrow 41 \]

is well known for tertiary butyl groups.
Cryoscopic molecular weight measurements on TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

Cryoscopic molecular weight measurements indicate TiCl$_3$[(CH$_3$)$_3$CCO$_2$] molecules exist as dimeric units in benzene solution. The complex remains dimeric at both high and low concentrations. This behavior is different to that reported for TiCl$_3$(CH$_3$CO$_2$) which is monomeric at low concentrations and dimeric at high concentrations121. In view of the importance of this measurement it was repeated several times, and the same result was obtained each time.

Molecular structure of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

A single crystal x-ray structure determination upon TiCl$_3$[(CH$_3$)$_3$CO$_2$] revealed that the compound exists as a trimer in the solid state. The titanium atoms form an approximate isosceles triangle. They are joined by carboxylate ligands and chlorine bridges. Tables 3.3 and 3.5 contain bond lengths and angles respectively for the complex. Two views of the trimer and the atom numbering scheme are presented in Figures 3.4 and 3.5.

An interesting feature of the structure is the triply bridging chlorine atom (Cl(3)) which connects the three titanium atoms. This chlorine atom is located 0.961 Å above the Ti$_3$ plane. Its bond to Ti(3) is long (2.839Å) and its bonds to Ti(1) and Ti(2) (2.577, 2.565Å) show some lengthening relative to the titanium-chlorine bonds of the bridging chlorine Cl(2) (2.49, 2.476Å).
Table 3.2 Mass Spectrum of TiCl$_3$[[(CH$_3$)$_3$CCO$_2$]]

<table>
<thead>
<tr>
<th>m/z value</th>
<th>339</th>
<th>341</th>
<th>343</th>
<th>345</th>
<th>194</th>
<th>192</th>
<th>190</th>
<th>188</th>
<th>157</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative abundance</td>
<td>223</td>
<td>412</td>
<td>398</td>
<td>233</td>
<td>46</td>
<td>180</td>
<td>351</td>
<td>279</td>
<td>543</td>
</tr>
<tr>
<td>m/z</td>
<td>155</td>
<td>153</td>
<td>122</td>
<td>120</td>
<td>118</td>
<td>85</td>
<td>83</td>
<td>57</td>
<td>41</td>
</tr>
<tr>
<td>R.A.</td>
<td>691</td>
<td>702</td>
<td>120</td>
<td>490</td>
<td>588</td>
<td>199</td>
<td>800</td>
<td>1000</td>
<td>684</td>
</tr>
<tr>
<td>m/z</td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R.A.</td>
<td>247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mass Spectrum of (CH$_3$)$_3$CCOOH

<table>
<thead>
<tr>
<th>m/z value</th>
<th>57</th>
<th>56</th>
<th>45</th>
<th>41</th>
<th>39</th>
<th>29</th>
<th>28</th>
<th>27</th>
<th>18</th>
<th>17</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Abundance</td>
<td>1000</td>
<td>64</td>
<td>85</td>
<td>420</td>
<td>132</td>
<td>308</td>
<td>96</td>
<td>104</td>
<td>296</td>
<td>70</td>
</tr>
</tbody>
</table>
Figure 3.4: The structure of Ti$_3$Cl$_9$[(CH$_3$)$_3$CCO$_2$]$_3$
Table 3.3: Bond lengths (Å)

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ti(1)-Cl(2)</td>
<td>2.435(2)</td>
</tr>
<tr>
<td>Ti(1)-Cl(4)</td>
<td>2.184(3)</td>
</tr>
<tr>
<td>Ti(1)-O(2)</td>
<td>1.573(4)</td>
</tr>
<tr>
<td>Ti(2)-Cl(2)</td>
<td>2.476(2)</td>
</tr>
<tr>
<td>Ti(2)-Cl(3)</td>
<td>2.184(2)</td>
</tr>
<tr>
<td>Ti(2)-O(1)</td>
<td>1.955(5)</td>
</tr>
<tr>
<td>Ti(3)-Cl(1)</td>
<td>2.287(3)</td>
</tr>
<tr>
<td>Ti(3)-Cl(8)</td>
<td>2.287(3)</td>
</tr>
<tr>
<td>Ti(3)-O(4)</td>
<td>1.935(5)</td>
</tr>
<tr>
<td>O(1)-C(1)</td>
<td>1.2611(10)</td>
</tr>
<tr>
<td>O(3)-C(6)</td>
<td>1.253(3)</td>
</tr>
<tr>
<td>O(5)-C(11)</td>
<td>1.269(3)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.503(11)</td>
</tr>
<tr>
<td>C(2)-C(41)</td>
<td>1.553(13)</td>
</tr>
<tr>
<td>C(3)-C(32)</td>
<td>1.312(57)</td>
</tr>
<tr>
<td>C(3)-C(52)</td>
<td>1.422(37)</td>
</tr>
<tr>
<td>C(41)-C(52)</td>
<td>1.548(53)</td>
</tr>
<tr>
<td>C(51)-C(52)</td>
<td>1.588(53)</td>
</tr>
<tr>
<td>C(57)-C(7)</td>
<td>1.514(9)</td>
</tr>
<tr>
<td>C(7)-C(91)</td>
<td>1.557(17)</td>
</tr>
<tr>
<td>C(7)-C(83)</td>
<td>1.340(34)</td>
</tr>
<tr>
<td>C(7)-C(102)</td>
<td>1.343(38)</td>
</tr>
<tr>
<td>C(81)-C(92)</td>
<td>0.936(45)</td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.337(13)</td>
</tr>
<tr>
<td>C(15)-C(18)</td>
<td>1.383(18)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.378(18)</td>
</tr>
<tr>
<td>Table 3.4: Bond angles (deg)</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)-C(3)</td>
<td>78.6(1)</td>
</tr>
<tr>
<td>C(1)-C(2)-C(4)</td>
<td>170.5(1)</td>
</tr>
<tr>
<td>C(1)-C(3)-C(4)</td>
<td>82.6(1)</td>
</tr>
<tr>
<td>C(1)-C(3)-C(6)</td>
<td>100.0(1)</td>
</tr>
<tr>
<td>C(1)-C(4)-C(6)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(6)</td>
<td>88.4(3)</td>
</tr>
<tr>
<td>C(2)-C(3)-C(7)</td>
<td>141.4(1)</td>
</tr>
<tr>
<td>C(2)-C(4)-C(7)</td>
<td>118.4(1)</td>
</tr>
<tr>
<td>C(2)-C(4)-C(8)</td>
<td>117.4(1)</td>
</tr>
<tr>
<td>C(2)-C(5)-C(6)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(2)-C(5)-C(7)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(2)-C(5)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(7)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(3)-C(4)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(3)-C(5)-C(7)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(3)-C(5)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(7)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(4)-C(5)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(5)-C(6)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(8)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(9)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(6)-C(7)-C(10)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(9)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(7)-C(8)-C(10)</td>
<td>56.7(2)</td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>56.7(2)</td>
</tr>
</tbody>
</table>
Figure 3.5: The structure of Ti₃Cl₉[(CH₃)₃CCO₂]₃
The Ti-Cl bridge region has elongated (Ti-Cl-Ti angles are more than 90°) and the angle between the terminal chlorines has opened up. The Ti(1) - Cl(3) - Ti(2) angle of 94.7° (cf. the Ti(1) - Cl(2) - Ti(2) angle of 99.2°) shows distortion of the bridge as Cl(3) is bonded to Ti(3) as well as Ti(1) and Ti(2). The angles between the terminal chlorines attached to the titanium atoms have opened from the ideal 90° as shown in Table 3.5

Table 3.5: Angles between terminal chlorines.

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(4) - Ti(1) - Cl(6)</td>
<td>100.6°</td>
</tr>
<tr>
<td>Cl(5) - Ti(2) - Cl(7)</td>
<td>101.3°</td>
</tr>
<tr>
<td>Cl(1) - Ti(3) - Cl(9)</td>
<td>99°</td>
</tr>
<tr>
<td>Cl(8) - Ti(3) - Cl(9)</td>
<td>101.3°</td>
</tr>
<tr>
<td>Cl(1) - Ti(3) - Cl(8)</td>
<td>97.3°</td>
</tr>
</tbody>
</table>

This angle opening is as described by Hoffmann[40] who suggested sp rehybridisation opens up the angle between the terminal ligands after closed shell repulsions have stretched the bridging region.

The Cl(2) - Cl(3) distance of 3.209Å is longer than the bridging chlorine separation found in (TiCl₄.EtOAc)₂ (3.18Å82) or Ti₂Cl₁₀²⁻ (3.165Å42) again showing distortion of the bridge due to the influence of Ti(3).

The carboxylate bridging Ti(1) and Ti(2) is reasonably symmetrical with Ti-O bond lengths of 1.953 and 1.965Å and C-O bond lengths of ~1.26Å. The other two carboxylate ligands are unsymmetrical. The Ti-O bond lengths of Ti(3) are longer than those of Ti(1) or Ti(2). The Ti(3) - O bond
lengths are ~1.98Å and the Ti -O bond lengths for the other titaniums are ~1.88Å. The C-O bond lengths are also unequal, one C-O bond being longer than the other within the same carboxylate group.

All of the carboxylate ligands have O-C-O bond angles of 121-123°. These values are as expected from comparison with previous carboxylate structures(33).

DISCUSSION

The trimeric nature of TiCl₃[(CH₃)₃CCO₂] in the solid state may be used to explain much of the spectral data previously reported for this compound.

Infra-red spectra

The presence of two sets of carboxylate stretching frequencies in the infra-red spectrum of TiCl₃[CH₃(CO₂)] may be explained as there are two slightly different types of bridging carboxylates in the compound. The crystal structure of the compound revealed that a single molecule of TiCl₃[CH₃(CO₂)] contains a carboxylate symmetrically bridging two titaniums linked by two chlorine bridges and two asymmetric carboxylate bridges linking the Ti₂ unit to the third titanium of the trimer.

The symmetric carboxylate bridge has both Ti-O bond lengths equal and both C-O bond lengths equal, whereas in the asymmetric carboxylate bridge these bond lengths differ. The two sorts of bridge will have different CO₂-stretching frequencies in the infra-red due primarily to the unequal C-O bond lengths of the asymmetric carboxylate. Therefore two Δ values will be obtained from the infra-red spectrum. These values will be similar as
both carboxylates are still bidentate bridging. The Δ values found in the infra-red spectrum of TiCl$_3$[(CH$_3$)$_3$CO$_2$] are 125cm$^{-1}$ and 135cm$^{-1}$. These Δ values are reasonable for the presence of two slightly different bidentate bridging carboxylates.

1H and 13C NMR Spectra

The proton NMR spectrum of TiCl$_3$[(CH$_3$)$_3$CO$_2$] contains multiple peaks around 1.1 - 1.55 p.p.m. Decoupling experiments have shown that these peaks do not arise from proton spin-spin coupling. Therefore each resonance must be due to a different species.

The compound is trimeric in the solid state but cryoscopic measurements indicate that it is dimeric in solution. The trimer must dissociate into dimers upon dissolution. Simplistically this may occur as in the equation below:

$$2\{\text{TiCl}_3[(\text{CH}_3)_3\text{COC}_2]\}_3 \longrightarrow 3\{\text{TiCl}_3[(\text{CH}_3)_3\text{COC}_2]\}_2$$

However in the trimer two of the titanium centres are trans MA$_4$B$_2$ systems and the third is a cis MA$_4$B$_2$ system, as shown in Figure 3.6.

Figure 3.6: MA$_4$B$_2$ Systems
Upon dissolution the two trans titanium atoms will form a dimer as they are already joined by chlorine and carboxylate bridges. The third titanium cannot dimerise as its cis configuration is not correctly orientated to form chlorine bridges. This titanium must isomerise from cis to trans before a dimer can form. Isomerisation may occur through formation of four or five coordinate chelated species as shown in Figure 3.7.

As the formation of chelating carboxylates is unfavourable the isomerisation will be slow and a number of different species and transition states, which give different resonances in the 1H NMR spectrum, will be formed.

The titanium crotonate derivative, $\text{Ti}_2\text{Cl}_7(\text{CH}_3\text{CH}=\text{CHCO}_2)(\text{CH}_3\text{CH}=\text{CHCOO}_2)$ may model one of the species present in solution. The complex represents a dimeric residue where attack by HCl has occurred before the pendent oxygen atom of the carboxylate residue can bond to titanium forming the di-μ-carboxylato species.

Heating will increase the rate of interconversion between the different species until interconversion is fast in comparison with the NMR time scale and only one resonance is observed. The variable temperature 1H NMR spectra of $\text{TiCl}_3[(\text{CH}_3)_3\text{CCO}_2]$ show merging of the resonances as the temperature is increased. At 100°C the resonances are in an intermediate - exchange pattern and it is expected that at higher temperatures only one resonance will be seen.

Another possible cause of the multiple peaks is carboxylate scrambling or exchange. This will increase in rate as the temperature is raised eventually giving single resonances. The contribution of scrambling and exchange
processes to the multiple resonances is probably small as multiple peaks have not been reported in the 1H NMR spectra of other metal pivalates. Carboxylate scrambling and exchange is shown in Figure 3.8.

The 13C NMR spectrum of TiCl$_3$[(CH$_3$)$_3$CO$_2$] does not show multiple peaks as the isomerisation and scrambling processes are fast compared to the 13C NMR time scale. This means that only single resonances will be observed.

Mass Spectrum

The TiCl$_3$[(CH$_3$)$_3$CO$_2$] trimer fragments within the probe and only TiCl$_n$ ions and a single titanium carboxylate residue are distinguishable. No molecular ion could be identified.

Molecular Structure

In the solid state TiCl$_3$[(CH$_3$)$_3$CO$_2$] exists as a trimeric unit. This structure is unexpected since most TiCl$_3$L or TiCl$_4$.L species are chlorine bridged dimers. The predicted structure for TiCl$_3$(RCO$_2$) compounds is shown in Figure 3.9.
Figure 3.7: Isomerisation and Dimerisation of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]

Possibility of solvent coordination at □

Possibly tetrahedral

+ similar unit C
flips into
equatorial plane

dimerise
tbp transition state
Figure 3.8: Carboxylate Scrambling and Exchange

Bond rupture/carboxylate scrambling.
Figure 3.9 Dimeric Structure for TiCl₃ [(CH₃)₃CCO₂⁻]

A possible explanation for the trimeric structure is provided by consideration of the coordination of each titanium atom. Ti(1) and Ti(2) are octahedrally coordinated with all the ligands in mutually *trans* positions, Ti(3) however achieves octahedral geometry by interaction with one of the chlorine atoms bridging Ti(1) and Ti(2) and is the *cis* stereoisomer.

It is known that the octahedral geometry is preferred for titanium (IV) complexes. It is therefore suggested that TiCl₃[(CH₃)₃CCO₂⁻] forms a trimer in the solid to allow interaction between a bridging chlorine atom and the third titanium to complete the octahedral coordination of Ti(3).

The presence of carboxylate ligands capable of bridging large interatomic distances allows the third titanium to be held in position for interaction with the bridging chlorine atom. It may be more energetically favourable to
have three six coordinate titanium atoms rather than two six coordinate and one five coordinate titanium atoms.

This structure may be compared to that of SeOCl$_2$. 2C$_5$H$_5$N$^{(144)}$ The selenium atom has square pyramidal coordination but a weak interaction between one chlorine atom and the selenium atom in a neighbouring molecule completes an octahedron. So there is secondary dimerisation in the solid state. The Se-Cl bond to the interacting chlorine is increased in length relative to the Se-Cl bond of the normal chlorine atom. A similar effect is observed in the structure of TiCl$_3$[(CH$_3$)$_3$CCO$_2$]$_1$, the Ti-Cl bond to the triply bridging chlorine atom being longer than to the other bridging chlorine atom.

The carboxylate ligands bridging the Ti$_2$ unit to the third titanium atom show signs of strain due to the long distance (4.5\AA) being bridged. The Ti-O bonds to the third titanium are longer than those to the other two titanium atoms. This strain is probably the cause of the molecular dissociation in solution whereby the third titanium breaks away and achieves octahedral coordination using weakly bound solvent molecules.

The Ti$_2$Cl$_6$ dichlorine bridged element of the trimer is similar to that found in many titanium (IV) complexes such as (TiCl$_4$. POCl$_3$)$_2^{(139)}$. In some other complexes the chlorine bridge is asymmetric, the chlorine atom being closer to one titanium centre than the other. In TiCl$_3$[(CH$_3$)$_3$CCO$_2$] the bridges are symmetric, the chlorine atoms being equidistant from the two titanium atoms. The chlorine bridges in (TiCl$_4$. EtOAc)$_2$ also have equal Ti-Cl bond lengths$^{(82)}$.

It is possible that other TiCl$_3$.L complexes where L is a ligand capable of bidentate bridging may have similar trimeric structures to that of
TiCl₃[(CH₃)₃CCO₂] . The bridging ligands stabilised the trimers formed by titanium-chlorine interactions.

Conclusions

A single crystal x-ray diffraction determination has shown that TiCl₃[(CH₃)₃CCO₂] is trimeric in the solid state with the three titanium atoms joined by carboxylate and chlorine bridges. In solution the compound dissociates into dimers. Its behavior in solution is very complex with many different species being formed and interconverting.
CHAPTER 4

HYDROLYSIS REACTIONS

OF

$\text{TiCl}_3(\text{RCO}_2)$ COMPLEXES
INTRODUCTION

Titanium (IV) halides and complexes are easily hydrolysed. Little is known about the intermediates involved in their hydrolysis. We have investigated the hydrolysis of titanium (IV) monocarboxylates in a coordinating solvent such as ethyl acetate or tetrahydrofuran. This is an extension of the work previously reported by Gordo128 who prepared [TiCl\textsubscript{2}(RCO\textsubscript{2})L]\textsubscript{2}O (R = C\textsubscript{6}H\textsubscript{5}, CH\textsubscript{3}; L = THF or EtOAc).

Titanium Oxo-Compounds

Titanium forms strong metal-oxygen bonds, often by hydrolysis of Ti(IV) compounds. A considerable number of complexes containing Ti-O groups have been reported. Most of these complexes are polynuclear species with bridging oxygens.

Some non-bridging Ti=O units have been reported. The titanium porphyrin complex TiO(OEPMe\textsubscript{2}) contains a distinct Ti=O moiety with a short Ti-O bond length145. A similar Ti=O unit is found in the porphyrin complex TiO(OEP)146. The complexes TiCl\textsubscript{4}O(Et\textsubscript{4}N)\textsubscript{2}, TiCl\textsubscript{4}O(Me\textsubscript{4}N)\textsubscript{2} and TiCl\textsubscript{4}O(NH\textsubscript{3}C\textsubscript{2}H\textsubscript{5})\textsubscript{2} were made by Feltz147. The Ti=O bond in the infra-red spectrum of the TiCl\textsubscript{4}O(NH\textsubscript{3}C\textsubscript{2}H\textsubscript{5})\textsubscript{2} complex had a Ti=O band at 830cm-1. The X-ray crystal structure of the TiCl\textsubscript{4}O(Et\textsubscript{4}N)\textsubscript{2} complex shows the titanium slightly above the plane of the four chlorine atoms and capped by the oxygen atom. The complex is a tetragonal pyramid148. The structure of TiCl\textsubscript{4}O2- is shown in Figure 4.1.
Most titanium oxo-compounds contain oxygen bridges forming oligomers. The partial hydrolysis of TiCl₂(acac)₂ produces a number of oxygen bridged complexes. The solvated complex [TiCl(C₅H₇O₂)₂]₂O.CHCl₃ has two TiCl(C₅H₇O₂)₂ units joined by an oxygen bridge. It was suggested that the Ti-O bonds have partial double-bond character (88). The complexes [TiO(acac)₂]₂ and [TiO(acac)₂]₂.2C₄H₈O₂ have two oxygen bridges joining the titanium atoms (149). The structure of [TiO(acac)]₂ is shown in Figure 4.2.

Other oxygen bridged dimers which have been structurally characterised by X-ray methods include [(Cp₂TiCl)₂O] (150) and [Cp₂Ti(C₉H₇N)]₂O₂⁺. The
Ti-O-Ti bridge in the cation is almost linear the bond angle being 174.6° (151) The complex [Cp₂TiCl]₂O was prepared by Giddings (152).

An unusual M₃O₃ ring is found in the structure of [(η⁵-C₅Me₅)TiMe(μ-O)]₃. The complex is made by hydrolysis of (η⁵-C₅Me₅)TiMe₃ in benzene or hexane solution (153). The structure of the Ti₃O₃ unit is shown in Figure 4.3.

![Figure 4.3: The Structure of [(η⁵-C₅Me₅)TiMe(μ-O)]₃](image)

Some oxo-bridged compounds containing four titanium atoms have been structurally characterised. Ammonium titanyl oxalate [(NH₄)₂ TiO(C₂O₄)₂. H₂O]₄ contains an eight membered ring of titanium and bridging oxygen atoms (154). The ring consists of two intersecting planes of titanium and oxygen atoms. This is shown in Figure 4.4.

A similar eight membered ring with alternating titanium and oxygen atoms is found in Cs₄[Ti₄O₄(C₆H₆NO₆)₄].6H₂O (155)

Hydrolysis of (η⁵-CH₃C₅H₄)TiCl₃ produces [(η⁵-CH₃C₅H₄)TiCl(μ-O)]₄. This compound contains an eight membered ring composed of four titanium atoms bridged by oxygens (156). Hydrolysis of (η⁵-C₅H₅)TiCl₃ gives the similar compound [(η⁵-C₅H₅)TiCl(μ-O)]₄ (157). The generalised structure of these compounds is shown in Figure 4.5.
An unusual \([\text{Ti}_4(\mu-O)_{6}]^{4+}\) cation with an adamantane type structure is found in \([\text{Ti}_4(\text{C}_6\text{H}_{15}\text{N}_3)_4(\mu-O)_6]\text{Br}_4.4\text{H}_2\text{O}\). The \(\text{Ti}_4\text{O}_6\) unit has a strong infrared band at 730 cm\(^{-1}\).

M\(_2(\mu-O)(\mu-\text{RCO}_2)_2\) Cores

Partial hydrolysis of \(\text{TiCl}_3(\text{RCO}_2)\) or \(\text{TiCl}_2(\text{RCO}_2)_2\) species \((R = \text{C}_6\text{H}_5, \text{CH}_3)\) in a coordinating solvent such as tetrahydrofuran or ethyl acetate produces binuclear complexes, \([\text{TiCl}_2(\text{RCO}_2)_2\text{L}_2]\)\(_2\)\text{O}\), containing a \(\mu\)-oxo-di-\(\mu\)-carboxylato core.\(^{159}\) Similar \([\text{M}_2(\mu-O)(\mu-\text{RCO}_2)_2]\)\(_n\)\(^{+}\) units are found in a number of other metal complexes.

The \(\mu\)-oxo-di-\(\mu\)-carboxylato core is found in complexes of \(\text{Fe(III)}\)\(^{160}\), \(\text{Mn(III)}\)\(^{161}\), \(\text{V(III)}\)\(^{162}\), \(\text{Os(IV)}\)\(^{163}\) and the mixed valence species \(\text{Mn(III)-Mn(IV)}\)\(^{164}\). Many of these complexes were synthesized as models for the metal centres in metalloproteins such as hemerythrin. The structure of \([\text{TiCl}_2(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}]\text{O}\) is shown in Figure 4.6.

The \(\text{Os(IV)}\) derivative \([\text{OsCl}_2(\text{CH}_3\text{CO}_2)\text{PPh}_3]\)\(_2\)\text{O}\), is the closest parallel to the \(\text{Ti(IV)}\) complex. Most of the other compounds which contain the \(\mu\)-oxo-di-\(\mu\)-carboxylato core are stabilised by macrocyclic ligands. In the titanium (IV) complex the ligands are \textit{trans} to the bridging oxygen however in the osmium (IV) complex the phosphine ligands are \textit{trans} to a carboxylate oxygen and a chlorine is \textit{trans} to the bridging oxygen.\(^{163}\) The structure of \([\text{OsCl}_2(\text{CH}_3\text{CO}_2)\text{PPh}_3]\)\(_2\)\text{O}\) is shown in Figure 4.7.
Figure 4.4. The Ti-O ring in $[(\text{NH}_4)_2\text{TiO(C}_2\text{O}_4)_2\cdot\text{H}_2\text{O}]_4$

Figure 4.5. The structure of $[(\eta^5-\text{R})\text{TiCl(}\mu-\text{O})]_4$ (R=\text{C}_5\text{H}_5 or \text{CH}_3\text{C}_5\text{H}_4)$
Figure 4.6 The structure of $[\text{TiCl}_2(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}]_2\text{O}$
The related μ-hydroxo-di-μ-carboxylato core has been found in complexes of Fe(II) and in the heterobimetallic complexes of Cr(III)-M(II), (M = Fe, Zn, Cu, Ni, Co, Mn). The bimetallic compounds were made using the $[\text{LCr(solvent)}_3]^{3+}$ cation as a reactant. L is 1,4,7-trimethyl - 1,4,7-triazacyclononane. X-ray crystal structures of the $[\text{LCr(\mu-OH)}_2\text{M}^{II}\text{L}]$ (M = Fe, Co) complexes were reported.

PREPARATION OF TITANIUM OXO-COMPOUNDS

The partially hydrolysed complexes were prepared in this work by dissolution of the monocarboxylate in EtOAc or THF which contained the stoichiometric amount of water required. The resulting solution was stirred and the volume of solvent reduced until solid precipitated. The $2\text{H}_2\text{O} : 1 \text{Ti}$ hydrolysis product was recrystallised from dichloromethane. Using these conditions under careful control the yields of the oxocompounds were 70-80%.
An alternative was to dissolve the monocarboxylate in pyridine containing the required amount of water. This produced a hydrolysed titanium (IV) pyridine adduct.

The reaction of the monopivalate pyridine adduct with water in the ratio 2 Ti : 1 H2O gave a yellow solid and an orange solution. The yellow solid was unreacted starting material. An orange solid obtained from the orange solution was soluble in chlorinated solvents. Its 1H NMR spectrum indicated the presence of 2 (CH3)3CCO2- residues to each pyridine.

The 1H NMR spectrum of the 2H2O : 1 Ti hydrolysis product contains only resonances due to coordinated ethyl acetate. The carboxylate group has been displaced. Elemental analysis of the white solid indicates a formulation as Ti2Cl3(EtOAc)6O4.

The white solid obtained from the 1H2O:1Ti hydrolysis of TiCl3[(CH3)3CCO2] is very soluble in chlorinated solvents. Its 1H NMR spectrum indicates the presence of equal amounts of (CH3)3CCO2- and EtOAc in the compound. The carbon and hydrogen analyses of the solid are close to those for [TiCl2[(CH3)3CCO2]EtOAc]2O. The Ti-O stretching region of the infra-red spectrum of the solid is very similar to that of the 2Ti : 1H2O hydrolysis product. Therefore it appears that the white solid is a mixture of [TiCl2[(CH3)3CCO2]EtOAc]2O and impurities.

Wieghardt and coworkers found that hydrolysis of [L2Mn2(μ-O)μ-MeCO2]2+ formed the di-μ-oxo-μ-acetato species [L2MnIII MnIV(μ-O)2 (μ-MeCO2)]2+ (167). By analogy it was expected that the 1H2O : 1 Ti hydrolysis of titanium (IV) monocarboxylates would produce the anion [Ti2L2(μ-O)2(μ-RCO2)]-. This anion is not formed. It is possible that
addition of a counter-ion would allow formation of the di-μ-oxo-μ-carboxylato anion.

A number of complexes of the type [TiCl₂(RCO₂)L]₂O were prepared. The carboxylates used were the benzoate, pivalate and p-toluate. The benzoate derivative had previously been made by Gordon(128)

17O NMR Studies of [TiCl₂(RCO₂)EtOAc]₂O

The oxo bridge in [TiCl₂(RCO₂)EtOAc]₂O complexes may be enriched with 17O by performing the hydrolysis of the monocarboxylate with H₂O₁⁷. When TiCl₃(PhCO₂) is hydrolysed with H₂O₁⁷ the 17O NMR spectrum of the crystalline product contains a sharp singlet at +810 p.p.m. (relative to H₂O = 0) due to the μ-oxo bridge(59)

The solution behavior of [TiCl₂(RCO₂)EtOAc]₂O (R = Ph, (CH₃)₃C) in EtOAc was investigated by 17O NMR spectroscopy. The carboxylate was dissolved in EtOAc which contained the appropriate amount of H₂O₁⁷ for 2Ti : 1H₂O. The 17O NMR spectra of the solutions were then measured.

Resonances due to the bulk ethyl acetate were observed at ~ 363 p.p.m. and 171 p.p.m. The resonance at 363 p.p.m. was due to the carbonyl oxygen and the resonance at 171 p.p.m. due to the ether type oxygen. Multiple resonances were observed in the region 800-900 p.p.m., these are reported in table 4.1. By comparison with the 17O NMR spectra reported for vanadium (V) complexes containing bidentate oxygen bridges(68) the multiple resonances are assigned to oxygens bridging two titanium atoms.
The 17O NMR spectrum of the solid extracted from the solution containing $\{\text{TiCl}_2(\text{RCO}_2)\text{EtOAc}\}_2\text{O}$ has a sharp singlet at 853 p.p.m. The resonance at 853 p.p.m. is therefore assigned to the bridging oxygen of $\{\text{TiCl}_2(\text{RCO}_2)\text{EtOAc}\}_2\text{O}$.

It has been suggested that the 17O chemical shifts of bidentate oxygen bridges have an inverse dependance upon the angle M-O-M.\(^\text{[69]}\) It is proposed that the other resonances found between 800-900 p.p.m. in the 17O NMR spectra of the μ-oxo-di-μ-carboxylato species are due to related complexes with slightly different M-O-M angles. Only small differences in M-O-M angle are needed to induce sizeable alterations in the chemical shift of the bridging oxygen. The decavanadate anion $\text{V}_{10}\text{O}_{28}^-$ contains three similar VOV bridges which have 17O chemical shifts of 766, 780 and 893 p.p.m.\(^\text{[68]}\)

If the 17O NMR spectrum of the oxo-bridged complexes is remeasured after allowing the solutions to stand a number of changes are observed. The resonances due to the μ-oxo oxygens have almost disappeared and a new resonance at 266 p.p.m. has appeared. The resonance at 363 p.p.m. due to the carbonyl oxygen of the ethyl acetate has increased in size relative to the resonance at 171 p.p.m. due to the ether type oxygen. These changes are shown in Figure 4.8.
TABLE 4.1 17O NMR SPECTRAL DATA FOR
[TiCl₂(RCO₂)EtOAc]₂O in EtOAc.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Chemical Shifts (p.p.m.)</th>
<th>[Intensity]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[TiCl₂(C₆H₅CO₂)EtOAc]₂O</td>
<td>809 [22.4], 833 [4.9], 840 [4.9], 854 [2.6]</td>
<td></td>
</tr>
<tr>
<td>[TiCl₂[(CH₃)₃CCO₂]EtOAc]₂O</td>
<td>807 [4.3], 822 [2.7], 826 [6.2], 841 [4.6], 853 [60.5], 870 [9.8]</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.8

17O NMR Spectra of \(\{\text{TiCl}_2[(\text{CH}_3)_3\text{CO}_2]\text{EtOAc}\}_2\text{O} \)

Fresh

After 14 days

The 17O NMR spectra show the presence of 17O-enriched alcohol species. These results support the proposed mechanism for the acid-catalyzed reaction. The enrichment of the carbonyl group in the acid-catalyzed process is observed. It is proposed that the 17O-enriched alcohol is formed through hydrolysis of the alkyl ester.
The changes in the 17O NMR spectrum indicate the selective 17O enrichment of the carbonyl group of the bulk ethyl acetate and the production of 17O enriched carboxylic acid. The μ-oxo bridge of the $[\text{TiCl}_2(\text{RCO}_2)\text{EtOAc}]_2\text{O}$ complex has been depleted of 17O. No 17O enrichment of the ether type oxygen of the bulk ethyl acetate was observed.

A possible explanation for these observations is the hydrolysis and re-esterification of the ethyl acetate. It is proposed that the "hydrolysis" occurs by a variant $\text{AAC}2$ mechanism using Ti_2O rather than H_2O. The H^+ ions required are produced during the initial formation of the oxo-compound as shown in the equation below:

$$2\text{TiCl}_3(\text{RCO}_2) + 2\text{EtOAc} + \text{H}_2\text{O} \rightarrow [\text{TiCl}_2(\text{RCO}_2)\text{EtOAc}]_2\text{O} + 2\text{HCl}$$

The 17O depletion of the μ-oxo bridge indicates that re-esterification occurs by the normal acid catalysed esterification mechanism. These mechanisms are shown in figures 4.9 and 4.10.

The $\text{AAC}2$ ester "hydrolysis" mechanism indicates that the 17O from the bridge will always finish in the carboxylic acid formed and never in the alcohol. The 17O NMR spectra show no signs of any 17O enriched alcohol but the new resonance at 266 p.p.m. may be assigned to carboxylic acid oxygens (17O). This supports the proposed mechanism.

Esterification by the acid catalysed mechanism produces a mixture of ethyl acetate with 17O enriched carbonyl groups and H_2O^{17}. The 17O NMR spectra show 17O enrichment of the carbonyl groups of the bulk ethyl acetate but no H_2O^{17} is observed. It is possible that any H_2O^{17} produced immediately reacts with titanium giving oxo-bridged species which then
take part in "hydrolysis" of the bulk ethyl acetate. As H+ is present any H2O17 produced may take part in the acid catalysed hydrolysis of the bulk ethyl acetate.
Figure 4.9. Modified AAC2 Ester Hydrolysis Mechanism

\[
\text{CH}_3\text{CO}_2\text{H}_5 + \text{H}^+ \rightleftharpoons \text{CH}_3\text{C}^+\text{O}^+\text{-O}_2\text{H}_5
\]

\[
\text{CH}_3\text{C}^+\text{O}^+\text{-O}_2\text{H}_5 + [\text{Ti}^\text{O}_2\text{Ti}^\text{O}_2] \rightleftharpoons \text{CH}_3\text{C}^\text{O}_2\text{-O}_2\text{H}_5 + [\text{Ti}]
\]

\[
\text{CH}_3\text{C}^\text{O}_2\text{-O}_2\text{H}_5 + \text{H}^+ \rightleftharpoons \text{CH}_3\text{C}^\text{H}^\text{O}^\text{O}_2\text{-O}_2\text{H}_5
\]

\[
\text{CH}_3\text{C}^\text{H}^\text{O}^\text{O}_2\text{-O}_2\text{H}_5 \rightleftharpoons \text{CH}_3\text{C}_2\text{H}_5 + \text{C}_2\text{H}_5\text{OH}
\]
Figure 4.10. Acid Catalysed Esterification Mechanism

\[
\text{CH}_3\text{C}-\text{OH} + \text{H}^+ \rightleftharpoons \text{CH}_3\text{C}-\text{OH}
\]

\[
\text{CH}_3\text{C}-\text{OH} + \text{C}_2\text{H}_5\text{OH} \rightleftharpoons \text{CH}_3\text{C}-\text{OH} + \text{C}_2\text{H}_5\text{O}^+
\]

\[
\text{CH}_3\text{C}-\text{OH} \rightleftharpoons \text{CH}_3\text{C}-\text{OH} + \text{H}^+
\]

\[
\text{CH}_3\text{C}-\text{OH} + \text{H}^+ \rightleftharpoons \text{CH}_3\text{C}-\text{OH} + \text{H}_2\text{O}
\]

\[
\text{CH}_3\text{C}-\text{OC}_2\text{H}_5 \rightleftharpoons \text{CH}_3\text{C}-\text{OC}_2\text{H}_5 + \text{H}^+
\]
17O NMR Spectra of the 1 : 10 (H₂O/Ti) Hydrolysis Product

TiCl₃[(CH₃)₃CCO₂] was dissolved in ethyl acetate which contained an appropriate quantity of H₂O¹⁷ to allow a large excess of titanium (1 H₂O¹⁷ = 10 Ti). The 17O NMR spectrum of the solution was measured immediately and after allowing to stand for 7 days.

The spectra have resonances due to ethyl acetate at 162 and 172 p.p.m. These resonances have equal integrals. The other resonances of the spectra are reported in Table 4.2.

In both spectra the resonances around 800-900 p.p.m. are assigned to bidentate oxygens bridging two titanium atoms. The resonances at 266 p.p.m. and 247 p.p.m. are assigned to oxygens in a carboxylic acid. By comparison with vanadium (V) species they the resonances at 508 p.p.m. and 413 p.p.m. are tentatively assigned to triply bridging oxygen atoms.

On standing the resonances at 874 p.p.m., 853 p.p.m. and 847 p.p.m. disappear and the resonance at ~ 864 p.p.m. diminishes in size. The ethyl acetate resonances at 362 p.p.m. and 172 p.p.m. remain equal in size. The resonances due to the triply bridging oxygens and the carboxylic acids increase in magnitude.

It seems that when a large excess of TiCl₃[(CH₃)₃CCO₂] is hydrolysed by H₂O¹⁷ the carboxylate group is displaced and oxygen bridged species formed. The carboxylate may be displaced by H₂O¹⁷ attack upon the carboxyl groups carbon forming 17O enriched carboxylic acid or a 17O enriched Ti-O-Ti bridge. Some H₂O¹⁷ reacts with three titanium centres to give triply bridging oxygens.
On standing the bidentate bridged species are converted to the triply oxygen bridged complexes by the addition of another titanium. This process may involve displacement of a carboxylate as on standing the amount of 17O enriched carboxylic acid increases.

Finally the solution holds a small quantity of the most stable bidentate oxygen bridged species, 17O enriched carboxylic acid and one or more titanium complexes containing triply bridging oxygen atoms.

Cyclic Voltammetry

The electrochemical properties of $[\text{TiCl}_2(\text{RCO}_2)\text{L}]_2\text{O}$ were investigated by the cyclic voltammetry technique. The cyclic voltammogram of $[\text{TiCl}_2(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}_2]_2\text{O}$ is shown in Figure 4.11.

![Cyclic voltammogram of $[\text{TiCl}_2(\text{C}_6\text{H}_5\text{CO}_2)\text{EtOAc}_2]_2\text{O}$](image)

Figure 4.11. Cyclic voltammogram of $[\text{TiCl}_2(\text{C}_6\text{H}_5\text{COO})\text{EtOAc}_2]_2\text{O}$
Table 4.2 17O NMR Spectral Data for the 1:10 (H$_2$O/Ti) Hydrolysis

<table>
<thead>
<tr>
<th>Time</th>
<th>Chemical Shifts</th>
<th>[Integral]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>874 [9], 867 [38] 853 [8] 508 [38], 413 [24], 266 [68] 247 [35]</td>
<td></td>
</tr>
</tbody>
</table>

relative to H$_2$O = 0.
The Voltammogram shows two one electron irreversible reduction waves at $E_{p,c}$ -1.25 and -1.03V. There is a broad reoxidation wave at -0.65V. The measurements were made vs. ferrocenium (FC+) /ferrocene (FC) in dichloromethane with [nBu$_4$N][Cl] as the supporting electrolyte.

The value of i_{pa}/i_{pc} is approximately 1/2 indicating non-nernstian waves with an unstable reduction product.$^{(71)}$ An unstable reduction product is also indicated by the variation of peak height with sweep rate. There appears to be a reaction of the reduction product with a component of the solution which regenerates the starting material. This is an EC' mechanism as shown below:

$$
\text{O} + \text{ne} \xrightleftharpoons{} \text{R} \\
\text{R} + \text{Z} \xrightleftharpoons{} \text{O} + \text{Y}
$$

$O = \text{species to be reduced, } R = \text{reduced species, } Z = \text{non-electroactive species, } Y = \text{side product.}$

The results indicate that both titanium (IV) centres are reduced to titanium (III).

It is noteworthy that the carboxylates TiCl$_3$(RCO$_2$) show no electrochemical activity within the solvent limits of dichloromethane.

These results may be compared with the electrochemical behavior of [OsCl$_2$(CH$_3$CO$_2$)PPh$_3$]$_2$O.$^{(63)}$ The complex undergoes a one electron reversible reduction with an $E_{1/2}$ value of 0.18V and a one electron irreversible reduction with an $E_{p,c}$ value of -0.93V. The ratio $i_{pa}/i_{pc} \approx 1$ for sweep rates between 50 and 400 mV/s, the separation between the anodic
and cathodic peaks was 75mV. It was claimed that these properties indicate an electron transfer process which is reversible. No chemical reaction of the reduced product was observed.
CHAPTER 5

TITANIUM - MAGNESIUM

COMPLEXES
INTRODUCTION

The use of magnesium supported polymerisation catalysts has caused considerable interest in bimetallic complexes containing titanium and magnesium. There are many examples of effective polymerisation catalysts which use magnesium compounds as supports. The components of a successful supported propylene polymerisation catalyst are limited. They are magnesium chloride, titanium tetrachloride and an aromatic ester used with triethylaluminium and another aromatic ester.

To obtain the required stereoregularity in the polymer produced the ester is complexed with the magnesium chloride and then reacted with the titanium tetrachloride. A number of catalysts have been prepared by reaction of a magnesium chloride ester adduct with titanium tetrachloride.

Bimetallic Magnesium Complexes

Some complexes containing magnesium, titanium and an ester have been made. Giannini and coworkers prepared and structurally characterised TiMgCl₆(CH₃COOC₂H₅)₄. The magnesium and titanium centres are connected by a di-μ-chloro bridge. The titanium is octahedrally coordinated by six chlorine atoms and the magnesium octahedrally coordinated by the two bridging chlorine atoms and four carbonyl oxygen atoms of the CH₃COOC₂H₅ ligands. The complex is an effective polymerisation catalyst. The structure of TiMgCl₆(CH₃COOC₂H₅)₄ is shown in Figure 5.1:
Figure 5.1. The Structure of TiMgCl$_6$(CH$_3$COOC$_2$H$_5$)$_4$

The related complex TiMgCl$_6$(THF)$_4$ was prepared by the reaction of TiCl$_4$(THF)$_2$ and MgCl$_2$(THF)$_2$ in tetrahydrofuran. The complex is isostructural with TiMgCl$_6$(EtOAc)$_4$.

When TiCl$_4$(THF)$_2$ and MgCl$_2$(THF)$_2$ are reacted in the ratio 2 Mg : 1 Ti in tetrahydrofuran solution a different product is formed. The titanium compound removes Cl$^-$ from bis (tetrahydrofuran) magnesium chloride to give the TiCl$_5$(THF)$^-$ anion. The [MgCl(THF)$_n$]+ formed reacts with MgCl$_2$(THF)$_2$ to form the [Mg$_2$(μ-Cl)$_3$(THF)$_6$]+ cation. The X-ray crystal structure of the anion shows the titanium to be pseudo-octahedrally coordinated. In the homobimetallic cation the two Mg$^{2+}$ atoms are bridged by three chlorine atoms, the Mg$^{2+}$ atoms achieve six coordination by bonding to three tetrahydrofuran molecules. The structures of the cation and anion are shown in Figure 5.2:
The complexes (a) MgCl₂. MCl₄.4L (M = Ti, Zr or Sn; L = CH₃COOC₂H₅ or THF), (b) MgCl₂. TiCl₄. 4 HCOOC₂H₅, (c) MgCl₂. TiCl₄. 2 CH₃COOC₂H₅. 2L (L = HCOOC₂H₅ or C₆H₅COOC₂H₅), (d) MgCl₂. TiCl₄. 2CH₃COOC₂H₅ and (e) [(MgCl₂)₃. TiCl₄.(SnCl₄)₂.12 CH₃COOC₂H₅] were prepared by Wallbridge and Gordon. The ligand displacement reactions of the complexes were studied by ¹H NMR spectroscopy showing that ethyl acetate is displaced by many other ligands. Preliminary X-ray structural studies on MgCl₂. SnCl₄. 4EtOAc indicate it is isomorphous with MgCl₂. TiCl₄. 4EtOAc.

Reaction of MgCl₂ with TiCl₄ in ClCH₂COOC₂H₅ solution produces the complex TiMgCl₅(ClCH₂CO₂)(ClCH₂COOC₂H₅)₃. The magnesium and titanium atoms are bridged by two chlorine atoms and a ClCH₂CO₂-residue. The ClCH₂CO₂- bridge comes from an ethylchloroacetate molecule which has lost an ethyl forming a carboxylate bridge. The infrared spectrum of the complex has two bands, at 1620cm⁻¹ and 1325cm⁻¹ which were assigned to v(CO₂⁻) vibrations. The structure of TiMgCl₅(ClCH₂CO₂) (ClCH₂COOC₂H₅)₃ is shown in Figure 5.3:
Another complex containing a transition metal and magnesium joined by chlorine bridges was made by the reaction of ferric chloride and MgCl₂(THF)₂ in tetrahydrofuran. This produced the unstable complex [MgCl(THF)₅][FeCl₄]⁻. The presence of [FeCl₄]⁻ was confirmed by addition of Bu₄N⁺ which gave the previously characterised compound [Bu₄N][FeCl₄]. The [MgCl(THF)₅][FeCl₄] was unstable in solution changing to the chloro-bridged complex [FeCl₂(μ-Cl)₂Mg(THF)₄]. It was claimed that the reduction of the iron was caused by cleavage of tetrahydrofuran. The X-ray crystal structure of [FeCl₂(μ-Cl)₂Mg(THF)₄] shows a distorted tetrahedral geometry for the iron (II) atom and distorted octahedral geometry for the Mg(II) atom. The structure of [FeCl₂(μ-Cl)₂Mg(THF)₄] is shown in figure 5.4:
Preparation and Properties of Bimetallic Titanium-Magnesium Complexes.

A number of different methods were used in attempts to prepare titanium-magnesium bimetallic complexes. The aim of the experiments was to make a bimetallic complex with the metal centres joined by carboxylate bridges as in the compound TiMgCl$_5$(ClCH$_2$CO$_2$) (ClCH$_2$COOC$_2$H$_5$)$_3$[12]

Magnesium carboxylates were reacted with titanium tetrachloride in chloroform or ethyl acetate solution. No reaction occurred in chloroform, unreacted Mg(CH$_3$CO$_2$)$_2$ was recovered from the reaction mixture. Reaction of magnesium benzoate with titanium tetrachloride in ethyl acetate produced a yellow solid which was recrystallised from dichloromethane/hexane.

The 1H NMR spectrum of the yellow solid showed that C$_6$H$_5$CO$_2$- and ethyl acetate residues were present in a 1:1 ratio. The infra-red spectrum of the solid contained bands due to Ti-Cl stretching vibrations as well as bands due
to ethyl acetate and the benzoate carboxyl group. Elemental analyses indicated that the solid was TiMgCl$_4$(C$_6$H$_5$CO$_2$)$_2$ (CH$_3$COOC$_2$H$_5$)$_2$.

The reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with magnesium oxide in ethyl acetate solution forms a pale yellow solid. Infra-red and 1H NMR spectra show the presence of both ethyl acetate and pivalate residues. The elemental analysis of the solid shows it to be a mixture of the titanium (IV) pivalate ethyl acetate adduct and magnesium oxide.

A standard solution of magnesium chloride in ethyl acetate was prepared by refluxing a mixture of MgCl$_2$ and EtOAc for eighteen hours. The reaction of this standard solution with titanium tetrachloride, ρ-CH$_3$C$_6$H$_4$CO$_2$H and THF gave a yellow solid. The solid was recrystallised from dichloromethane giving small yellow crystals. When the solid was analysed it was found to contain no magnesium.

The MgCl$_2$ solution was reacted with a solution of TiCl$_3$(C$_6$H$_5$CO$_2$) in ethyl acetate. This gave a yellow solid which turns greenish yellow upon heating. The infra-red spectrum of the solid contains bands due to ν(CO$_2$-) vibrations, ethyl acetate and Ti-Cl vibrations. The 1H NMR spectrum of the solid has resonances at 8.2 p.p.m., 7.55 p.p.m., 4.4 p.p.m., 2.35 p.p.m., and 1.35 p.p.m. The resonances at 8.2 and 7.55 p.p.m. are assigned to ring protons of the benzoate residue. The resonances at 4.4, 2.35 and 1.35 p.p.m. are due to coordinated ethyl acetate. The titanium and magnesium analyses of the product indicated that it has a formulation as TiMgCl$_5$(C$_6$H$_5$CO$_2$) (EtOAc)$_2$.

The complex TiMgCl$_6$. 2CH$_3$COOC$_2$H$_5$ was prepared by the method described by Giannini. Reaction of this complex with para-
hydroxybenzoic acid in ethyl acetate gave an immediate precipitate of an orange solid. The solid was insoluble in all common organic solvents. The infra-red spectrum of the solid has a band due to the carbonyl group of ethyl acetate at 1680cm⁻¹ implying that the ester is coordinated to magnesium. Bands due to ν(CO₂⁻) and metal-halogen modes are also observed. A band at 3390cm⁻¹ is assigned to the hydroxyl group of the para-hydroxybenzoic acid residue. Titanium and magnesium analyses indicate the orange solid is TiMgCl₆(HOC₆H₄CO₂H)(EtOAc)₂. A proposed structure for TiMgCl₆(RCO₂H)₂ EtOAc compounds is shown in Figure 5.5.

Some equations for the reactions forming these compounds are shown below:

\[
\begin{align*}
\text{MgCl}_2(\text{EtOAc})_2 + \text{TiCl}_3 (\text{C}_6\text{H}_5\text{CO}_2) \text{ EtOAc} & \rightarrow \\
\text{TiMgCl}_5(\text{C}_6\text{H}_5\text{CO}_2)(\text{EtOAc})_2 \\
\text{TiCl}_4 + \text{Mg}(\text{C}_6\text{H}_5\text{CO}_2)_2 + 2 \text{EtOAc} & \rightarrow \\
\text{TiMgCl}_4(\text{C}_6\text{H}_5\text{CO}_2)_2.2 \text{EtOAc} \\
\text{TiMgCl}_6.2 \text{EtOAc} + \text{HOC}_6\text{H}_4\text{CO}_2\text{H} & \rightarrow \\
\text{TiMgCl}_6(\text{HOC}_6\text{H}_4\text{CO}_2\text{H}) (\text{EtOAc})_2
\end{align*}
\]
Figure 5.5. General Structure for TiMgCl₆(RCO₂H)(EtOAc)₂ Complexes

Discussion

Gianni and coworkers claim in a Montedison SpA patent to have prepared the complex TiMgCl₅(C₆H₅CO₂). 2EtOAc¹⁷₂ The complex was prepared by reaction of TiCl₃(C₆H₅CO₂) with an ethyl acetate solution of anhydrous MgCl₂. The compound is reported to be green.

The yellow complex TiMgCl₅(C₆H₅CO₂). 2EtOAc prepared during our investigations turns green upon heating. It is possible that it is converted to green TiMgCl₅(C₆H₅CO₂). 2EtOAc by the action of heat. The similar compound TiMgCl₆(HOC₆H₄CO₂H). 2EtOAc does not change colour upon heating. The extreme insolubility of the complex suggests it is polymeric.

In the complex TiMgCl₄(C₆H₅CO₂)₂ (EtOAc)₂ the titanium and magnesium atoms may be linked by both chlorine and carboxylate bridges. The ethyl acetate is probably coordinated to magnesium as previous studies have shown magnesium is the preferred coordination centre for ethyl
A possible structure for TiMgCl₄(C₆H₅CO₂)₂. 2EtOAc is shown in Figure 5.6:

Figure 5.6. A Possible Structure for TiMgCl₄(C₆H₅CO₂)₂. 2EtOAc

These and previous studies(73,174,176) have shown that magnesium chloride will only react with titanium compounds when it is present as a solvate. The magnesium chloride solvates are prepared using coordinating solvents such as ethyl acetate or tetrahydrofuran. The solvates MgCl₂(THF)₂ and MgCl₂(THF)₄ have been investigated by Handiv and coworkers(177).

The unreactivity of anhydrous magnesium chloride is probably due to its highly crystalline nature. Magnesium chloride has a CdCl₂ type layer lattice structure each magnesium being surrounded by six chlorine atoms. The coordinating solvent may break up the lattice increasing the surface area of the magnesium chloride and making it more vulnerable to attack by titanium.
CHAPTER 6

EXPERIMENTAL
EXPERIMENTAL

Almost all of the compounds which have been studied in this thesis are oxygen and/or moisture sensitive and so had to be manipulated in an atmosphere of dry, inert nitrogen gas. Crystals for X-ray diffraction were handled in argon gas. The compounds were prepared and manipulated using standard Schlenk techniques and a nitrogen filled glovebox. When required solvents and reagents were purified and dried by the methods described in the next section.

Purification and drying of reagents and solvents

Acetylacetone

Acetylacetone was supplied by Fisons Ltd. It was distilled from NaHCO₃ and P₂O₅ prior to use.

Aromatic Solvents

Benzene and toluene were supplied by Fisons Ltd. Both were stored over Na wire. Benzene was distilled from CaH₂ before use. Toluene was distilled from Na benzophenone ketal before use.

Carboxylic Acids

Crotonic, 2,2-diphenylpropionic, p-hydroxybenzoic, pivalic and 2,4,6 -Trimethyl-benzoic acids were supplied by Aldrich Ltd. 2,2-Diphenylpropionic acid was recrystallised from CH₂Cl₂ before use. Benzoic acid was supplied by May and Baker Ltd., isobutyric and cinnamic acids were
supplied by B.D.H. Ltd. All isomers of toluic acid were supplied by Fisons Ltd. Isobutyric acid was distilled from P₂O₅ before use. The other acids were used without further purification.

Chlorinated Solvents

CH₂Cl₂, CHCl₃ and CCl₄ were supplied by Fisons Ltd. Chlorobenzene was supplied by Aldrich Ltd. CHCl₃, CCl₄ and C₆H₅Cl were distilled from CaCl₂ prior to use. CH₂Cl₂ was distilled from CaH₂ before use.

Dibenzoyl Methane

C₆H₅COCH₂COC₆H₅ was supplied by Aldrich Ltd. and used without further purification.

Diethyl Ether

Et₂O was supplied by May & Baker Ltd. It was stored over Na wire and distilled from Na/benzophenone ketal before use.

Ethyl Acetate

CH₃COOC₂H₅ was supplied by Fisons Ltd. It was shaken with NaHCO₃ and distilled from CaH₂ before use.

Hexane

Hexane was supplied by Fisons Ltd. and distilled from CaH₂ prior to use.
Metal Chlorides

Anhydrous MgCl₂ was supplied by I.C.I. Plc and was not purified further before use.

TiCl₄ was supplied by B.D.H. Ltd. and was not purified further before use.

Magnesium Oxide

MgO was supplied by May and Baker Ltd., and was not purified further before use.

Petroleum Ethers

Petroleum ether (B.P. 60-80°C) was supplied by B.D.H. Ltd. Petroleum ether (B.P. 100-120°C) was supplied by Fisons Ltd. Both were distilled from CaH₂ prior to use. Unless otherwise stated all petroleum ether used was B.P. 60-80°C.

Pyridine

C₅H₅N was supplied by Fisons Ltd. It was dried over solid KOH and distilled onto 3A molecular sieves before use.

Tetrahydrofuran

C₄H₈O was supplied by May and Baker Ltd. It was distilled from Na/benzophenone Ketal before use.
Titanium Alkoxides

Ti(OPr')₄ was supplied by Bentron GMBH and used without further purification.

Preparation and Reactions of Titanium (IV) Trischloromonocarboxylates

Preparation of TiCl₃(C₆H₅CO₂)

TiCl₄(5.5cm³, 50.16mmol) was added dropwise to a magnetically stirred solution of C₆H₅CO₂H (5.375g, 44.06mmol) in toluene (60cm³). A yellow precipitate formed immediately, which dissolved to form a dark red solution when the suspension was heated to 100°C for 1 hour. On cooling to room temperature an orange precipitate formed. The supernatant liquid was removed and the solid washed with petroleum ether (2 x 40cm³). It was then dried in vacuo for 7 hours. (Yield 11.05g, 91%).

i.r. 1600(s) 1555(s) 1500(s) 1460(s) 1410(m)
1380(s) 1315(m) 1180(m) 1160(s) 1100(m)
1070(w) 1025(m) 1000(w) 850(w) 800(m)
750(s) 690(s) 570(m) 640(m) 620(s)
570(s) 510(s) 410(s) 375(s) 320(m)
290(w) 260(m) cm⁻¹

¹H NMR 7.5-8.5(m) p.p.m.

Analysis for TiCl₃C₇H₅O₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>17.39</td>
<td>38.67%</td>
</tr>
<tr>
<td>Found:</td>
<td>17.43</td>
<td>38.51%</td>
</tr>
</tbody>
</table>
Preparation of TiCl$_3$[CH$_3$C(C$_6$H$_5$)$_2$CO$_2$]

TiCl$_4$ (1.5cm3, 13.68mmol) was added slowly to a magnetically stirred solution of CH$_3$C(C$_6$H$_5$)$_2$CO$_2$H (2.84g, 12.57mmol) in benzene (30cm3). The resulting red solution was stirred for 4 hours and pumped to dryness forming an orange solid. The solid was washed with petroleum ether (4x20cm3) and dried in vacuo for 3 hours. (Yield 2.63g, 55%).

\begin{array}{cccccc}
\text{i.r.} & 1645(\text{m}) & 1600(\text{m}) & 1530(\text{s}) & 1490(\text{m}) & 1225(\text{m}) \\
1190(\text{w}) & 1160(\text{w}) & 1125(\text{m}) & 1105(\text{w}) & 1080(\text{m}) \\
1065(\text{w}) & 1030(\text{m}) & 1000(\text{w}) & 865(\text{sh}) & 790(\text{sh}) \\
760(\text{m}) & 700(\text{s}) & 660(\text{m}) & 630(\text{b}) & 530(\text{m}) \\
470(\text{m}) & 420(\text{m}) & 385(\text{m}) & 330(\text{sh}) & \text{cm}^{-1}
\end{array}

1H NMR 7.0-7.4(\text{m}) (10H), 1.74(\text{s}) (3H) p.p.m.

Analysis for TiCl$_3$C$_{15}$H$_{13}$O$_2$:

\begin{align*}
\text{Ti} & \quad \text{Calculated:} & 12.62 \% \\
\text{Found:} & \quad 12.52 \%
\end{align*}

Preparation of TiCl$_3$[(CH$_3$)$_2$CHCO$_2$]

TiCl$_4$ (3.6cm3, 32.83mmol) was added slowly to a magnetically stirred solution of (CH$_3$)$_2$CHCO$_2$H (2.7cm3, 29.67mmol) in CCl$_4$ (30cm3). A yellow precipitate formed immediately. The suspension was stirred for 12 hours and pumped to dryness. The resulting yellow foam was recrystallised from CCl$_4$ (10cm3) to form a yellow powder. The powder was washed with
petroleum ether (3x30cm³) and dried in vacuo for 3 hours. (Yield 2.29g, 32%).

i.r. 1650(b) 1600(m) 1500(sh) 1360(m) 1300(m)
1170(m) 1100(m) 1030(m) 945(m) 745(m)
675(w) 580(sh) 390(s) 320(m) cm⁻¹

¹H NMR 2.23(s) (1H), 0.8-1.2(ms) (6H) p.p.m.

Analysis for TiCl₃C₄H₇O₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>19.84 %</td>
</tr>
<tr>
<td>Found:</td>
<td>20.31 %</td>
</tr>
</tbody>
</table>

Attempted Preparations of TiCl₃(C₆H₅CH₂CO₂)

(i) TiCl₄ (2.4cm³, 21.89mmol) was added slowly to a solution of C₆H₅CH₂CO₂H (2.38g, 17.5mmol) in benzene (30cm³). The resulting red solution was stirred for an hour and the volume of solvent reduced by pumping. The addition of petroleum ether (50cm³) (in order to precipitate the product) produced an intractable red oil.

(ii) TiCl₄ (3.3cm³, 30mmol) was added slowly to a solution of C₆H₅CO₂H (3.31g, 24.34mmol) in CH₂Cl₂ (15cm³). The resulting orange solution was stirred for 8 hours and the volume of solvent reduced by pumping. An orange solid precipitated from the solution. It was washed with petroleum ether (3x30cm³) and dried in vacuo for 3 hours. After 8 hours the orange solid had turned black.
in vacuo for 3 hours. After 8 hours the orange solid had turned black.

(iii) TiCl₄ (1.8cm³, 16.42mmol) was added slowly to a solution of C₆H₅CO₂H (2.177g, 16.00mmol) in Et₂O (30cm³) at -78°C. A yellow precipitate formed immediately along with some orange solid. The supernatant liquid was removed and the solid washed with petroleum ether (2x20cm³). The yellow and orange solids then turned green.

(iv) TiCl₄ (2cm³, 18.24mmol) was added slowly to a solution of C₆H₅CO₂H (2.18g, 16.03mmol) in THF (30cm³). A yellow precipitate formed immediately. The supernatant liquid was removed and the solid was washed with petroleum ether (3x20cm³) and dried in vacuo for 3 hours. The yellow solid was TiCl₄·2THF.

(v) TiCl₄ (4.4cm³, 40.12mmol) was added to a magnetically stirred suspension of Na(C₆H₅CH₂CO₂) (6.307g, 39.92mmol) in Et₂O (50cm³). A yellow precipitate formed immediately but redissolved on stirring. The solution was heated at 30°C for 2 hours and allowed to cool to room temperature. The volume of solvent was reduced until a black precipitate formed. The black solid proved intractable.

Reaction of the silver salt with TiCl₄ gave the same result.
Preparation of TiCl₃[(CH₃)₃CCO₂]

TiCl₄ (4.5cm³, 41.04mmol) was added dropwise to a magnetically stirred solution of (CH₃)₃CCO₂H (3.43g, 33.63mmol) in benzene (30cm³). The resulting red solution was heated at 60°C for 1 hour and allowed to cool. The volume of solvent was reduced by pumping until yellow solid precipitated. The supernatant liquid was removed, the solid washed with petroleum ether (4x30cm³) and dried in vacuo for 3 hours. (Yield 7.3g, 85%).

\[
\text{i.r.} \quad 1643(\text{m}) \quad 1553(\text{m}) \quad 1508(\text{s}) \quad 1488(\text{s}) \quad 1428(\text{s}) \\
\text{1371(s)} \quad \text{1233(s)} \quad \text{1033(m)} \quad \text{938(w)} \quad \text{778(w)} \\
\text{613(s)} \quad \text{496(m)} \quad \text{458(m)} \quad \text{403(s)} \quad \text{323(sh)cm⁻¹}
\]

\(^1\text{H NMR} 1.1-1.5 (\text{ms}) \text{ p.p.m.} \]
\(^{13}\text{C NMR} 189.6(\text{s}), 128.2(\text{s}), 26.7 (\text{s}) \text{ p.p.m.} \]

Analysis for TiCl₃C₅H₉O₂:

<table>
<thead>
<tr>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>18.76</td>
<td>23.52</td>
</tr>
<tr>
<td>Found:</td>
<td>18.75</td>
<td>23.46</td>
</tr>
</tbody>
</table>

Preparation of TiCl₃(C₉H₆NCO₂)

TiCl₄ (2cm³,18.24mmol) was added slowly to a magnetically stirred suspension of C₉H₆NCO₂H (2.759g, 15.9mmol) in benzene (50cm³) at 0°C. A yellow precipitate formed immediately. The suspension was heated at 80°C for 6 hours, allowed to cool and the solid filtered off. The
solid was washed with petroleum ether (3x10cm³) and dried in \textit{vacuo} for 3 hours. (yield 3.74g, 72%).

\begin{tabular}{cccccc}
 i.r. & 1615(m) & 1600(m) & 1585(s) & 1428(s) & 1400(m) \\
 1370(s) & 1315(w) & 1275(m) & 1230(m) & 1175(w) \\
 1160(m) & 1150(m) & 1035(m) & 970(w) & 870(m) \\
 855(m) & 825(m) & 790(m) & 760(m) & 700(s) \\
 635(w) & 610(m) & 585(m) & 550(w) & 530(w) \\
 495(m) & 470(m) & 455(m) & 415(s) & 390(s) \\
 280(m) & 250(m) & & & cm-1 \\
\end{tabular}

1H NMR 7.37(s) p.p.m.

Analysis for TiCl\textsubscript{3}C\textsubscript{10}H\textsubscript{6}NO\textsubscript{2}

\begin{tabular}{cccc}
 Ti & C & H & N \\
 Calculated: & 14.67 & 36.8 & 2.64 & 2.98 % \\
 Found: & 14.7 & 36.63 & 1.85 & 4.29 % \\
\end{tabular}

Preparation of TiCl\textsubscript{3}(o-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}CO\textsubscript{2})

TiCl\textsubscript{4} (6.5cm³, 59.27mmol) was added slowly to a magnetically stirred solution of o-CH\textsubscript{3}C\textsubscript{6}H\textsubscript{4}CO\textsubscript{2}H (7.58g, 55.74mmol) in toluene (30cm³). An orange precipitate formed immediately. The suspension was heated at 100°C for 2 hours, allowed to cool and the supernatant liquid removed. The yellow solid was washed with petroleum ether (2x30cm³) and dried in \textit{vacuo} for 8 hours. (Yield 9.8g, 61%).
i.r.
1600(m) 1580(m) 1550(s) 1505(m) 1430(m)
1370(w) 1350(s) 1310(m) 1290(m) 1200(m)
1165(m) 1140(m) 1110(m) 1060(w) 1030(w)
 880(w) 865(w) 835(w) 810(w) 695(w)
 665(m) 620(m) 580(m) 565(m) 540(m)
 490(m) 445(sh) 420(m) 410(m) 380(m)
 270(m) cm\(^{-1}\)

\(^1\)H NMR 6.8-8.3 (b), 2.2-3.0 (b) p.p.m.

Analysis for TiCl\(_3\)C\(_8\)H\(_7\)O\(_2\)
Calculated: \text{Ti}^{16.55} \text{C}^{33.17} \text{H}^{2.42}\%
Found: \text{Ti}^{16.26} \text{C}^{32.96} \text{H}^{2.39}\%

Preparation of TiCl\(_3\) (p-CH\(_3\)C\(_6\)H\(_4\)CO\(_2\))

TiCl\(_4\) (2cm\(^3\), 18.24 mmol) was added dropwise to a magnetically stirred solution of p-CH\(_3\)C\(_6\)H\(_4\)CO\(_2\)H (2.25g, 16.55 mmol) in benzene (30cm\(^3\)). The resulting red solution was heated at 70\(^\circ\)C for 2 hours, allowed to cool and the volume of solvent reduced by pumping. On standing at 5 \(^\circ\)C a yellow solid precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (2x30cm\(^3\)) and dried in \textit{vacuo} for 4 hours. (Yield 2.75g, 57%).
i.r.
1610(m) 1580(m) 1560(w) 1530(m) 1505(m)
1410(m) 1350(m) 1320(m) 1185(s) 1160(m)
1125(m) 1040(w) 1020(m) 860(m) 840(m)
 755(s) 690(w) 645(m) 625(m) 610(m)
 500(m) 460(m) 400(sb) 330(m) 295(m)
cm⁻¹

¹H NMR 8.0 (s), 7.39 (s), 2.49(s) p.p.m.

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>16.55</td>
<td>33.17</td>
<td>2.42 %</td>
</tr>
<tr>
<td>Found:</td>
<td>16.40</td>
<td>33.00</td>
<td>2.62 %</td>
</tr>
</tbody>
</table>

Preparation of TiCl₃[C₆H₂(CH₃)₃CO₂]

TiCl₄(1.4cm³, 12.77 mmol) was added dropwise to a magnetically stirred solution of C₆H₂(CH₃)₃CO₂H (2.05g, 12.5 mmol) in CH₂Cl₂ (30cm³). The resulting red solution was heated at 40°C for 5 hours and allowed to cool. Addition of petroleum ether (BP 100-120°) (60cm³) caused an immediate formation of orange precipitate. The supernatant liquid was removed and the solid washed with petroleum ether (3x20cm³) and dried in vacuo for 2 hours.

i.r.
1610(s) 1595(sh) 1575(m) 1485(m) 1330(m)
1295(m) 1190(m) 1125(m) 1100(w) 1030(b)
 990(w) 855(m) 795(m) 690(m) 620(b)
 570(m) 525(m) 510(m) 495(m) 440(m)
 405(b) 390(m) 300(b) cm⁻¹

¹H NMR 6.87 (s), 2.26 (s) p.p.m.
Analysis for TiCl₃C₁₀H₉O₂ + 1/3 C₆H₁₄:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc</td>
<td>13.09</td>
<td>41.8</td>
<td>4.07%</td>
</tr>
<tr>
<td>Found</td>
<td>13.45</td>
<td>39.98</td>
<td>4.21%</td>
</tr>
</tbody>
</table>

Preparation of TiCl₃(CH₃CH=CHCO₂)

TiCl₄ (6.65cm³, 60.64 mmol) was added dropwise to a solution of CH₃CH=CHCO₂H (5.145g, 59.83 mmol) in CH₂Cl₂ (20cm³) at 0°C. The resulting yellow solution was allowed to warm to 20°C and stirred for 2 hours. The volume of solvent was then reduced by pumping causing the precipitation of yellow solid. The supernatant liquid was removed and the solid washed with hexane (12x20cm³) and dried in vacuo for 3 hours. (Yield 11.75g, 82%).

i.r. 1635(s) 1580(s) 1425(s) 1300(s) 1270(m)
 1175(s) 1115(m) 1040(m) 1020(m) 960(s)
 920(m) 845(m) 840(m) 690(m) 660(m)
 630(m) 590(m) 535(s) 500(s) 420(s)
 370(s) 325(m) 300(m) 260(m) 230(m)

 cm⁻¹

¹H NMR 7.75(b) (1H), 6.25(d) (1H), 2.2(d) (3H) p.p.m.

Analysis for TiCl₃C₄H₅O₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calc</td>
<td>20.00</td>
<td>20.05</td>
<td>2.09%</td>
</tr>
<tr>
<td>Found</td>
<td>19.90</td>
<td>20.20</td>
<td>2.15%</td>
</tr>
</tbody>
</table>
Preparation of TiCl₃(C₆H₅CH=CHCO₂)

TiCl₄ (1.7 cm³, 15.5 mmol) was added dropwise to a solution of C₆H₅CH=CHCO₂H (2.21 g, 14.93 mmol) in CH₂Cl₂ (20 cm³) at 0°C. The resulting orange solution was allowed to warm to 20°C and stirred for 2 hours. A red solid precipitated and the supernatant liquid was removed then the solid was washed with hexane (2x30 cm³). It was then dried in vacuo for 1/2 hour, washed with hexane (3x20 cm³) and dried in vacuo for 4 hours. (Yield 2.93 g, 65%).

\[\text{i.r.} \quad 1620(s) \quad 1570(m) \quad 1545(s) \quad 1530(sh) \quad 1495(m)\]
\[1290(m) \quad 1265(m) \quad 1240(m) \quad 1200(w) \quad 1180(w)\]
\[1140(m) \quad 1090(w) \quad 1040(m) \quad 1000(w) \quad 980(m)\]
\[865(m) \quad 850(m) \quad 765(s) \quad 675(m) \quad 620(m)\]
\[610(m) \quad 580(m) \quad 550(m) \quad 480(m) \quad 460(m)\]
\[415(s) \quad 350(sh) \quad 260(m) \quad \text{cm}^{-1}\]

¹H NMR 7.7 (s), 7.53 (b), 7.3 (b), 6.65 (b) p.p.m.

Analysis for TiCl₃C₆H₇O₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>15.89</td>
<td>35.83</td>
<td>2.32 %</td>
</tr>
<tr>
<td>Found:</td>
<td>15.95</td>
<td>35.74</td>
<td>2.40 %</td>
</tr>
</tbody>
</table>

Preparation of TiCl₄(CH₃)₃CCOSH

(CH₃)₃CCOSH (3 cm³, 23.64 mmol) was added to a solution of TiCl₄ (4.5 cm³, 41 mmol) in CH₂Cl₂ (25 cm³). The resulting red-brown solution was stirred for 1 hour after which dark yellow solid precipitated. The
supernatant liquid was removed and the solid washed with petroleum ether (3x25cm³) and dried in vacuo for 3 hours. (Yield 3.56g, 49%).

i.r. 2520(m) 1555(sb) 1400(m) 1380(s) 1250(m)
1225(m) 1045(s) 1025(s) 935(w) 900(s)
820(m) 770(b) 665(m) 485(m) 460(b)
400(s) 375(sh) 295(m) 250(m) cm⁻¹

¹H NMR 0.9 (s) p.p.m.

Analysis for TiCl₄C₅H₁₀OS:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>15.57</td>
<td>19.49</td>
<td>3.25</td>
<td>46.12</td>
<td>10.39</td>
</tr>
<tr>
<td>Found:</td>
<td>15.42</td>
<td>19.75</td>
<td>3.48</td>
<td>41.09</td>
<td>9.45</td>
</tr>
</tbody>
</table>

Preparation of Ti[(CH₃)₂CHO]₃(C₆H₅CO₂)

Ti[(CH₃)₂CHO]₄ (5cm³, 16.82 mmol) was added to a solution of C₆H₅CO₂H (2.05g, 16.81 mmol) in C₆H₆ (30cm³). The resulting colourless solution was heated at 80°C for 8 hours and allowed to cool. The solvent was removed by pumping giving a cream oil. The oil was dissolved in warm hexane (10cm³), and when the solution was cooled a white solid precipitated. The supernatant liquid was removed and the solid dried in vacuo for 5 hours. (Yield 1.98g, 34%).

i.r. 1720(m) 1620(m) 1600(s) 1560(s) 1540(s)
1490(m) 1420(s) 1320(m) 1270(m) 1250(sh)
1135(b) 1065(m) 1000(b) 950(b) 850(s)
815(sh) 675(m) 620(b) 505(m) 475(b)
380(m) 360(m) 320(m) cm⁻¹

¹H NMR 8.2 (m) (2H), 7.5 (m) (3H), 5.09 (m) (3H), 1.3 (m) (18H) p.p.m.
Analysis for TiC₁₆H₂₆O₅:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>13.85</td>
<td>55.50</td>
<td>7.52 %</td>
</tr>
<tr>
<td>Found:</td>
<td>14.21</td>
<td>55.32</td>
<td>7.64 %</td>
</tr>
</tbody>
</table>

Reaction of TiCl₃(RCO₂) (R=C₆H₅, (CH₃)₃C or o-CH₃C₆H₄) with THF

e.g.: TiCl₃(C₆H₅CO₂) (1.67g, 6.06 mmol) was dissolved in THF (20cm³) to give a yellow solution. The solution was magnetically stirred for 25 minutes and the solvent removed by pumping until a yellow solid precipitated. The supernatant liquid was removed and the solid washed with hexane (2x20cm³) and dried in vacuo for 3 hours.

¹H NMR spectra and elemental analysis showed the yellow solid to be TiCl₄.2THF.

Analysis for TiCl₄C₈H₁₆O₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>18.29</td>
<td>28.75</td>
<td>4.79</td>
<td>42.53 %</td>
</tr>
<tr>
<td>Found:</td>
<td>18.51</td>
<td>29.00</td>
<td>4.81</td>
<td>43.48 %</td>
</tr>
</tbody>
</table>

The others were similar.

Reaction of TiCl₃[(CH₃)₃CCO₂] with THF

TiCl₃[(CH₃)₃CCO₂] (3.306g, 12.94 mmol) was dissolved in C₆H₆ (30cm³) to give an orange solution. THF (1.1cm³, 13.58 mmol) was added, and the solution immediately turned yellow. After standing for 36 hours yellow crystals formed in the solution. The supernatant liquid was removed and
the crystals washed with petroleum ether (2 x 20 cm3) and dried in *vacuo* for 2 hours.

Elemental analyses showed the crystals to be the oxo-compound \{TiCl$_2$[(CH$_3$)$_3$CO$_2$]THF\}$_2$O. The THF used must have contained a trace of water causing hydrolysis of the carboxylate. Comparison of the infra-red and 1H NMR spectra with those of an authentic sample of \{TiCl$_2$[(CH$_3$)$_3$CO$_2$]THF\}$_2$O confirmed the identification of the crystals.

Analysis for Ti$_2$Cl$_4$C$_{18}$H$_{34}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculated:</td>
<td>15.97</td>
<td>36.01</td>
<td>5.67</td>
</tr>
<tr>
<td>found:</td>
<td>16.03</td>
<td>36.01</td>
<td>5.67</td>
</tr>
</tbody>
</table>

Preparation of \{TiCl$_2$[(CH$_3$)$_3$CO$_2$]THF\}$_2$OH$_5$C$_6$

TiCl$_3$[(CH$_3$)$_3$CO$_2$] (5.235 g, 20.5 mmol) was dissolved in C$_6$H$_6$ (30 cm3). THF (1.66 cm3, 20.5 mmol) was added to the orange solution which immediately turned yellow. After stirring for 1/2 hour a solution of phenol (1.934 g, 20.57 mmol) in C$_6$H$_6$ (5 cm3) was added. The resulting dark-red solution was stirred for 2 hours, pumped to a red sticky mass and redissolved in toluene (20 cm3). On leaving the resulting red solution at -20\degreeC for 100 hours an orange solid precipitated. The supernatant liquid was removed and the solid was washed with petroleum ether (2 x 10 cm3) and dried in *vacuo* for 21/2 hours. (Yield 3.88 g, 28%).

\[
\begin{array}{cccccc}
\text{i.r.} & 1750(w) & 1650(m) & 1605(m) & 1585(m) & 1540(s) \\
 & 1460(m) & 1430(s) & 1365(m) & 1230(s) & 1165(m) \\
 & 1120(m) & 1070(m) & 1040(sh) & 1020(m) & 920(m) \\
 & 860(m) & 760(s) & 690(m) & 665(m) & 615(m) \\
 & 515(m) & 460(m) & 390(m) & 250(m) & \text{cm}^{-1} \\
\end{array}
\]
1H NMR 7.25(b)(5H), 4.4(m)(8H), 2.07(m)(8H), 1.25(ms)(18H) p.p.m.

Analysis for Ti$_2$Cl$_4$C$_{24}$H$_{39}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated</td>
<td>14.15</td>
<td>42.55</td>
<td>5.76</td>
<td>%</td>
</tr>
<tr>
<td>found:</td>
<td>14.14</td>
<td>42.19</td>
<td>5.71</td>
<td>%</td>
</tr>
</tbody>
</table>

Reaction of TiCl$_3$(p-CH$_3$C$_6$H$_4$CO$_2$) with THF and C$_6$H$_5$OH

TiCl$_3$(p-CH$_3$C$_6$H$_4$CO$_2$)(1.241g, 4.29 mmol) was dissolved in C$_6$H$_6$ (25cm3). THF (0.4 cm3, 4.9 mmol) was added to the orange solution which immediately turned yellow. A solution of C$_6$H$_5$OH (0.202g, 2.15mmol) in C$_6$H$_6$ (5cm3) was added. The resulting red solution was heated at 70 °C for 1 hour. On leaving for 36 hours an orange solid precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (3 x 20 cm3) and dried in vacuo for 3 hours. 1H and 13C NMR spectra revealed that no C$_6$H$_5$O- residues were present so the solid is formulated as [TiCl$_2$(p-CH$_3$C$_6$H$_4$CO$_2$)THF]$_2$O.

i.r. | 1630 (sh) | 1610 (m) | 1585 (m) | 1510 (s) | 1415 (s) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1310 (m)</td>
<td>1300 (m)</td>
<td>1265 (m)</td>
<td>1215 (w)</td>
<td>1180 (s)</td>
<td></td>
</tr>
<tr>
<td>1155 (m)</td>
<td>1120 (m)</td>
<td>1100 (m)</td>
<td>1045 (m)</td>
<td>1020 (m)</td>
<td></td>
</tr>
<tr>
<td>1010 (m)</td>
<td>960 (w)</td>
<td>925 (m)</td>
<td>860 (m)</td>
<td>855 (m)</td>
<td></td>
</tr>
<tr>
<td>800 (m)</td>
<td>765 (s)</td>
<td>680 (m)</td>
<td>620 (m)</td>
<td>550 (m)</td>
<td></td>
</tr>
<tr>
<td>490 (sh)</td>
<td>460 (s)</td>
<td>400 (s)</td>
<td>385 (s)</td>
<td>355 (s)</td>
<td></td>
</tr>
<tr>
<td>300 (m)</td>
<td>265 (m)</td>
<td>225 (m) cm$^{-1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1H NMR 8.05(b), 7.9 (d), 7.35 (d), 4.75 (m), 2.45 (s), 2.25 (m) p.p.m.

13C NMR 176, 146, 131.2, 129.9, 128.45, 75.75, 25.85, 21.8 p.p.m.
Analysis for Ti$_2$Cl$_4$C$_{24}$H$_{30}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>14.35</td>
<td>43.13</td>
<td>4.49</td>
<td>21.26 %</td>
</tr>
<tr>
<td>found:</td>
<td>12.73</td>
<td>46.42</td>
<td>4.87</td>
<td>18.66 %</td>
</tr>
</tbody>
</table>

Analysis for Ti$_2$Cl$_4$C$_{30}$H$_{35}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>12.86</td>
<td>48.33</td>
<td>4.69</td>
<td>19.06 %</td>
</tr>
<tr>
<td>found:</td>
<td>12.73</td>
<td>46.42</td>
<td>4.87</td>
<td>18.66 %</td>
</tr>
</tbody>
</table>

Reaction of TiCl$_3$(p-CH$_3$C$_6$H$_4$CO$_2$) with THF and C$_6$H$_2$Cl$_3$O

TiCl$_3$(p-CH$_3$C$_6$H$_4$CO$_2$) (1.405g, 4.85 mmol) was dissolved in C$_6$H$_6$ (20cm3) and a solution of C$_6$H$_2$Cl$_3$OH (0.478g, 2.42 mmol) in C$_6$H$_6$ (10cm3) added. The resulting red solution was heated at 65°C for half an hour and THF (0.4cm3, 4.9 mmol) added. The solution was then heated at 70°C for 16 hours. On allowing the solution to cool orange microcrystals formed. The supernatant liquid was removed and the crystals washed with petroleum ether (3x10cm3) and dried in vacuo for 6 hours. Elemental analysis and spectral evidence indicated that no C$_6$H$_2$Cl$_3$O-residues were present so the product was formulated as [TiCl$_2$(p-CH$_3$C$_6$H$_4$CO$_2$)THF)$_2$O].

i.r. 1630(sh) 1610(m) 1585(m) 1510(s) 1415(s)
1310(m) 1300(m) 1265(m) 1215(w) 1180(s)
1155(m) 1120(m) 1100(m) 1045(m) 1020(m)
1010(m) 960(w) 925(m) 860(m) 855(m)
800(m) 765(s) 680(m) 620(m) 550(m)
490(sh) 460(s) 400(s) 385(s) 355(s)
300(m) 265(m) 225(m) cm-1
\[^1H \text{NMR}\ 8.05(b),\ 7.9(d),\ 7.35(d),\ 4.8(m),\ 2.45(s),\ 2.25(m) \text{ p.p.m.} \]

Analysis for Ti_2Cl_4C_24H_30O_7 + 0.4 C_6H_6

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>14.34</td>
<td>45.42</td>
<td>4.64</td>
<td>20.26%</td>
</tr>
<tr>
<td>found:</td>
<td>14.53</td>
<td>45.75</td>
<td>4.95</td>
<td>20.66%</td>
</tr>
</tbody>
</table>

Preparation of \{TiCl_2[(CH_3)_3COCO_2]EtOAc\}_2O_2C_6H_4

TiCl_3[(CH_3)_3COCO_2] (0.916g, 3.60 mmol) and C_6H_4(OH)_2 (0.198g, 1.8 mmol) were mixed and dissolved in EtOAc (30cm^3). The resulting red solution was stirred for 4 hours and pumped to dryness yielding a red solid. The solid was washed with petroleum ether (6 x 20 cm^3) and dried in vacuo for 3 hours. (Yield) 0.62g, 47 \(\frac{1}{2} \)%.

\[\text{I.r.} \quad 1650 (s)\ 1580 (m)\ 1540 (s)\ 1320 (m)\ 1280 (w) \]
\[1260 (m)\ 1230 (m)\ 1170 (m)\ 1140 (m)\ 1100 (sh) \]
\[1065 (w)\ 1045 (w)\ 990 (m)\ 950 (sh)\ 860 (m) \]
\[780 (m)\ 690 (w)\ 610 (m)\ 550 (w)\ 515 (w) \]
\[455 (s)\ 375 (b)\ 300 (m) \text{ cm}^{-1} \]

\[^1H \text{NMR}\ 6.6-7.5(b)(2H),\ 4.25 (m)(2H),\ 2.25 (s)(3H),\ 1.1-1.5 (ms)(12H) \text{ p.p.m.} \]

Analysis for Ti_2Cl_4C_24H_38O_9

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>13.23</td>
<td>39.78</td>
<td>5.25</td>
</tr>
<tr>
<td>found:</td>
<td>13.33</td>
<td>39.64</td>
<td>5.41</td>
</tr>
</tbody>
</table>
Preparation of TiCl$_2$[(CH$_3$)$_3$CCO$_2$](CH$_3$COCHCOCH$_3$)

TiCl$_3$[(CH$_3$)$_3$CO$_2$] (2.813g, 11 mmol) was dissolved in C$_6$H$_6$ (30 cm3). CH$_3$COCH$_2$COCH$_3$ (1.2 cm3, 11.6 mmol) was added to the magnetically stirred solution. The resulting red solution was stirred for 15 hours after which an orange solid precipitated. The supernatant liquid was removed and the solid washed with hexane (2 x 20 cm3) and dried in vacuo for 4 hours. (Yield 2.14g, 61%).

i.r.
1830 (w) 1780 (w) 1670 (m) 1530 (s) 1420 (sh)
1320 (s) 1285 (s) 1230 (m) 1030 (m) 800 (m) 750 (sh) 670 (m) 600 (m) 540 (m)
470 (s) 415 (w) 380 (s) 320 (m) cm$^{-1}$

1H NMR 6.0 (s) (1H), 2.2 (s) (6H), 1.1 - 1.5 (ms) (9H) p.p.m.

Analysis for TiCl$_2$C$_{10}$H$_{16}$O$_4$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated</td>
<td>15.02</td>
<td>37.63</td>
<td>5.02</td>
</tr>
<tr>
<td>found:</td>
<td>15.56</td>
<td>37.38</td>
<td>5.34</td>
</tr>
</tbody>
</table>

Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with 2 CH$_3$COCH$_2$COCH$_3$

TiCl$_3$[(CH$_3$)$_3$CCO$_2$] (0.93g, 3.64 mmol) was dissolved in C$_6$H$_6$ (12 cm3). CH$_3$COCH$_2$COCH$_3$ (0.8 cm3, 7.72 mmol) was added to the magnetically stirred solution. After stirring for 1/2 hour an orange solid precipitated. The supernatant liquid was removed and the solid washed with hexane (5 x 15 cm3) and dried in vacuo for 3 hours. Comparisons of the infra-red
and 1H NMR spectra of the solid with those of TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$ show the solid to be TiCl$_2$ (CH$_3$COCHCOCH$_3$)$_2$.

Reaction of TiCl$_3$(C$_6$H$_5$CO$_2$) with CH$_3$COCH$_2$COCH$_3$

TiCl$_3$(C$_6$H$_5$CO$_2$)(1.665g, 6.05 mmol) was dissolved in C$_6$H$_6$ (40 cm3) and CH$_3$COCH$_2$COCH$_3$ (0.62 cm3, 6mmol) was added to the magnetically stirred solution. The resulting red solution was stirred for 15 hours and pumped to dryness. The red solid was washed with warm hexane (8 x 20 cm3) and dried in vacuo for 4 hours. Colourless crystals deposited from the hexane washings; these were identified as C$_6$H$_5$COOH by their infra-red and 1H NMR spectra. The red solid was identified as TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$ by comparison of its infra-red and 1H NMR spectra with those of an authentic sample of TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$. The same result is obtained if the reaction time is reduced to 10 minutes.

Reaction of TiCl$_3$(o-CH$_3$C$_6$H$_4$CO$_2$) with CH$_3$COCH$_2$COCH$_3$

TiCl$_3$ (o-CH$_3$C$_6$H$_4$CO$_2$) (2.518 g, 8.7 mmol) was added to magnetically stirred toluene (60 cm3) and CH$_3$COCH$_2$COCH$_3$ (0.9 cm3,8.7 mmol) was added. The suspension dissolved giving a red solution which was stirred for 36 hours. An orange precipitate formed and the supernatant liquid was removed and the solid washed with hexane (2 x 20 cm3). It was then dried in vacuo for 5 hours. The infra-red and 1H NMR spectra of the orange solid show it to be TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$. This is confirmed by its elemental analysis.

Analysis for TiCl$_2$C$_{10}$H$_{14}$O$_4$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>15.12</td>
<td>37.89</td>
<td>4.45</td>
<td>22.49</td>
</tr>
<tr>
<td>found:</td>
<td>15.31</td>
<td>38.08</td>
<td>4.58</td>
<td>22.37</td>
</tr>
</tbody>
</table>
Reaction of TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$ with C$_6$H$_5$COOH

TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$ (4.578 g, 14.45 mmol) was added to a solution of C$_6$H$_5$COOH (1.75 g, 14.43 mmol) in C$_6$H$_6$ (30 cm3). The mixture was heated at 80 °C for 48 hours. A red solid precipitated from the red solution and the supernatant liquid was removed and the solid washed with petroleum ether (4 x 30 cm3). It was then dried in vacuo for 3 hours. The infra-red and 1H NMR spectra of the solid show it to be unreacted TiCl$_2$(CH$_3$COCHCOCH$_3$)$_2$. Benzoic acid was recovered from the supernatant. The same result was obtained when the reactants were heated in CH$_2$Cl$_2$ for 3 hours.

Reaction of TiCl$_3$(C$_6$H$_5$CO$_2$) with C$_6$H$_5$COCH$_2$COC$_6$H$_5$

TiCl$_3$(C$_6$H$_5$CO$_2$) (0.672 g, 2.44 mmol) and C$_6$H$_5$COCH$_2$COC$_6$H$_5$ (0.549 g, 2.45 mmol) were mixed and dissolved in C$_6$H$_6$ (30 cm3). The resulting blood red solution was stirred for 16 hours. A red solid precipitated during the stirring. The supernatant liquid was removed and the solid washed with hexane (2 x 20 cm3) and dried in vacuo for 3 hours. Comparison of the F.A.B. mass spectrum of the solid with that of an authentic sample of TiCl$_3$(C$_6$H$_5$COCHCOC$_6$H$_5$) shows the red solid to be TiCl$_3$(C$_6$H$_5$COCHCOC$_6$H$_5$). This is confirmed by its 1H NMR spectra and infra-red spectra.

| i.r. | 1730 (m) | 1600 (m) | 1585 (m) | 1530 (s) | 1510 (s) | 1430 (m) | 1320 (s) | 1290 (s) | 1230 (m) | 1190 (m) | 1160 (m) | 1115 (m) | 1070 (m) | 1025 (m) | 1000 (m) | 935 (m) | 840 (w) | 820 (m) | 790 (w) | 770 (m) | 690 (m) | 680 (s) | 620 (w) | 610 (w) | 580 (s) | 540 (m) | 460 (w) | 435 (w) | 380 (m) | 370 (m) | 350 (s) | 300 (m) | 250 (m) | cm$^{-1}$
|------|----------|

1H NMR 8.1 (s) (4H), 7.5 (m) (6H), 1.25 (s) (1H) p.p.m.
+ve F.A.B. Mass spectrum of TiCl₃(C₆H₅COCHCOC₆H₅)(DTR matrix)
m/e 648, 495, 424, 346, 288, 191, 105, 77
+ve F.A.B. Mass spectrum of the red solid (DTR matrix)
m/e 648, 495, 424, 346, 288, 191, 105, 77

Reaction of TiCl₃(o-CH₃C₆H₄CO₂) with C₆H₅COCH₂COC₆H₅

TiCl₃(o-CH₃C₆H₄CO₂)(1.446g, 5mmol) was mixed with C₆H₅COCH₂COC₆H₅ (1.136g, 5mmol) and suspended in C₆H₆ (60cm³). The mixture dissolves forming a red solution. The red solution was stirred for 36 hours. A red solid precipitated. The supernatant liquid was removed and the solid washed with hexane (3 x 30 cm³) and dried in vacuo for 3 hours. The F.A.B. mass spectrum, infra-red and ¹H NMR spectra of the red solid show it to be TiCl₃(C₆H₅COCHCOC₆H₅).

Reaction of TiCl₃[(CH₃)₃CCO₂] with C₆H₅COCH₂COC₆H₅

TiCl₃[(CH₃)₃CCO₂] (3.381g, 15 mmol) and C₆H₅COCH₂COC₆H₅ (3.36g, 15 mmol) were mixed and dissolved in CH₂Cl₂(12 cm³). The resulting red solution was stirred at 0°C for 1/2 hour. Hexane (60 cm³) was added and a red solid precipitated. The supernatant liquid was removed and the solid washed with hexane (3 x 10 cm³) and dried in vacuo for 3 hours. The F.A.B. mass spectrum, infra-red and ¹H NMR spectra of the red solid reveal that it is TiCl₃(C₆H₅COCHCOC₆H₅) formed by the displacement of the carboxylate group.
Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with triphenylphosphine

Triphenylphosphine (4.276g, 16.3 mmol) was added to a magnetically stirred solution of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] (4.164g, 16.3 mmol) in CH$_2$Cl$_2$ (25 cm3). The resulting red solution was stirred for 2 hours and then addition of petroleum ether (50 cm3) caused the precipitation of a brown solid. The supernatant liquid was removed, the solid washed with petroleum ether (2 x 25 cm3) and dried in vacuo for 3½ hours. On standing the supernatant liquid turned green.

Recrystallisation of the brown solid from benzene gave blue and orange solids. The 1H NMR spectra of all the solids contained resonances at 7.6 p.p.m. due to the phenyl groups of triphenylphosphine. No consistent elemental analysis results were obtained indicating that reduction of the titanium had occurred.

Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] and pyridine

C$_5$H$_5$N (1 cm3, 12.5 mmol) was added to a magnetically stirred solution of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] (3.195g, 12.5 mmol) in CH$_2$Cl$_2$ (30 cm3). A yellow solid immediately precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (2 x 25 cm3) and dried in vacuo for 3 hours.

<table>
<thead>
<tr>
<th>i.r.</th>
<th>1640 (w)</th>
<th>1610 (s)</th>
<th>1540 (m)</th>
<th>1485 (sh)</th>
<th>1450 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1330 (w)</td>
<td>1220 (m)</td>
<td>1200 (m)</td>
<td>1165 (m)</td>
<td>1070 (m)</td>
</tr>
<tr>
<td></td>
<td>1050 (m)</td>
<td>1020 (m)</td>
<td>975 (w)</td>
<td>950 (w)</td>
<td>870 (w)</td>
</tr>
<tr>
<td></td>
<td>850 (m)</td>
<td>760 (s)</td>
<td>690 (s)</td>
<td>670 (m)</td>
<td>650 (m)</td>
</tr>
<tr>
<td></td>
<td>645 (m)</td>
<td>615 (m)</td>
<td>465 (m)</td>
<td>440 (s)</td>
<td>350 (s)</td>
</tr>
<tr>
<td></td>
<td>240 (w)</td>
<td></td>
<td></td>
<td></td>
<td>cm$^{-1}$</td>
</tr>
</tbody>
</table>
Analysis based on TiCl₃C₁₀H₁₄NO₂:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>14.32</td>
<td>35.88</td>
<td>4.19</td>
<td>4.19</td>
<td>31.85 %</td>
</tr>
<tr>
<td>found:</td>
<td>14.04</td>
<td>33.03</td>
<td>3.58</td>
<td>6.35</td>
<td>41.92 %</td>
</tr>
</tbody>
</table>

Reaction of TiCl₃[(CH₃)₃CCO₂] and pyridine (ii)

C₅H₅N (2.25 cm³, 28 mmol) was added to a magnetically stirred solution of TiCl₃[(CH₃)₃CCO₂] (3.551g, 14 mmol) in CH₂Cl₂ (25 cm³). A yellow solid immediately precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (3 x 30 cm³) and dried in *vacuo* for 3 hours.

i.r. 1610 (s) 1530 (m) 1490 (m) 1450 (s) 1230 (w)
 1220 (m) 1070 (m) 1050 (m) 1020 (m) 760 (m)
 690 (s) 650 (m) 615 (w) 470 (m) 440 (m)
 370 (s) 290 (m) 240 (w) cm⁻¹

Analysis based on TiCl₃C₁₅H₁₉N₂O₄

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>11.58</td>
<td>49.35</td>
<td>4.6</td>
<td>6.77</td>
<td>25.76 %</td>
</tr>
<tr>
<td>found:</td>
<td>11.64</td>
<td>37.03</td>
<td>4.15</td>
<td>6.09</td>
<td>31.77 %</td>
</tr>
</tbody>
</table>
Hydrolysis Reactions of titanium (IV) monocarboxylates

Hydrolysis of TiCl3[(CH3)3CCO2] (Ti:H2O ratio 1:2)

TiCl3[(CH3)3CCO2] (2.03g, 7.95 mmol) was dissolved in EtOAc (30 cm3) which contained H2O (0.29 cm3, 16 mmol). The resulting pale yellow solution was magnetically stirred for 11/2 hours. The volume of solvent was reduced by pumping until a white solid precipitated. The supernatant liquid was removed and the solid washed with petroleum ether (3 x 20 cm3) and dried invacuo for 3 hours.

(Yield based on Ti2Cl3(EtOAc)6O4: 1.23g, 39%).

i.r. 1750 (w) 1680 (s) 1640 (sh) 1540 (sh) 1490 (s)
1440 (sh) 1315 (m) 1230 (s) 1100 (w) 1040 (m)
850 (sh) 790 (s) 650 (m) 610 (m) 460 (b)
380 (b) cm-1

1H NMR 4.45 (m) (2H), 2.5 (s) (3H), 1.35 (t) (3H) p.p.m.

Analysis for Ti2Cl3C24H48O16:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calc</td>
<td>12.06</td>
<td>36.26</td>
<td>6.04</td>
<td>13.4 %</td>
</tr>
<tr>
<td>find</td>
<td>11.90</td>
<td>35.17</td>
<td>5.88</td>
<td>13.94%</td>
</tr>
</tbody>
</table>

Hydrolysis of TiCl3[(CH3)3CCO2] (Ti:H2O ratio 1:1)

TiCl3[(CH3)3CCO2] (1.424g, 5.6mmol) was dissolved in EtOAc (35cm3) which contained H2O (0.1cm3, 5.6mmol). The resulting yellow solution was magnetically stirred for 3 hours. The solution was pumped to dryness giving a cream solid. The solid was recrystallised from CH2Cl2.
(8 cm3), washed with petroleum ether (2x15 cm3) and dried in vacuo for 3 hours. (Yield based on Ti$_2$Cl$_4$(EtOAc)$_2$[(CH$_3$)$_3$CCO$_2$]$_2$O : 0.45g, 25%).

176

i.r. 1750 (m) 1660 (b) 1510 (sh) 1310 (b) 1240 (b) 1180 (sh) 1100 (m) 1050 (m) 1020 (sh) 940 (m) 900 (sh) 850 (b) 610 (b) 470 (b) 360 (b) cm$^{-1}$

1H NMR 4.3 (m) (2H), 2.25 (s) (3H), 1.35 (ms) (12H) p.p.m

Analysis based on Ti$_2$Cl$_4$C$_{18}$H$_{34}$O$_9$ (impure):

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>15.16</td>
<td>34.19</td>
<td>5.38</td>
<td>22.47%</td>
</tr>
<tr>
<td>found:</td>
<td>19.83</td>
<td>33.65</td>
<td>5.59</td>
<td>16.27%</td>
</tr>
</tbody>
</table>

Preparation of {TiCl$_2$[(CH$_3$)$_3$CCO$_2$]THF}$_2$O

TiCl$_2$[(CH$_3$)$_3$CCO$_2$] (3.72g, 14.6 mmol) was dissolved in THF (20 cm3) which contained H$_2$O (0.13 cm3, 7.3 mmol). The resulting yellow solution was magnetically stirred for 3 hours. On standing yellow crystals deposited from the solution. The supernatant liquid was removed and the crystals washed with petroleum ether (3 x 25 cm3) and dried in vacuo for 2 hours. (Yield 3.12g, 71%).

i.r. 1660 (m) 1560 (sh) 1530 (s) 1485 (m) 1425 (s) 1370 (m) 1360 (m) 1350 (m) 1300 (m) 1230 (m) 1180 (m) 1140 (m) 1040 (m) 1010 (s) 960 (m) 940 (w) 930 (m) 900 (m) 860 (s) 785 (m) 680 (s) 615 (m) 600 (m) 550 (m) 460 (s) 390 (s) 380 (m) 355 (s) 330 (sh) 260 (sh) 240 (m) cm$^{-1}$

1H NMR 4.55 (m) (4H), 2.1 (m) (4H), 1.25 (ms) (9H) p.p.m.
Analysis for Ti$_2$Cl$_4$C$_{18}$H$_{34}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>15.97</td>
<td>36.01</td>
<td>5.67</td>
<td>%</td>
</tr>
<tr>
<td>found:</td>
<td>15.25</td>
<td>36.01</td>
<td>5.67</td>
<td>%</td>
</tr>
</tbody>
</table>

Preparation of [TiCl$_2$(C$_6$H$_5$CO$_2$) EtOAc]$_2$O

TiCl$_2$(C$_6$H$_5$CO$_2$) (0.453 g, 1.66 mmol) was dissolved in EtOAc (10 cm3) which contained H$_2$O (0.015 cm3, 0.83 mmol). The resulting orange solution was heated at 60°C for 40 minutes after which yellow crystals formed. The solution was allowed to cool and the supernatant liquid removed and the crystals washed with petroleum ether (3 x 10 cm3). The crystals were dried in vacuo for 2 hours. (Yield 0.45 g, 81%).

i.r. 1650 (s) 1600 (m) 1520 (s) 1460 (s) 1410 (s)
 1380 (s) 1320 (s) 1180 (m) 1160 (w) 1150 (w)
 1100 (w) 1070 (w) 1040 (m) 1025 (m) 1010 (w)
 850 (m) 720 (s) 680 (m) 670 (m) 630 (m)
 610 (m) 510 (m) 480 (s) 385 (s) 345 (s)
 320 (m) 260 (w) cm$^{-1}$

1H NMR 7.3-8.4 (m) (10H), 4.47 (m) (4H), 2.5(s) (6H), 1.35 (t) (6H)
p.p.m.

Analysis for Ti$_2$Cl$_4$C$_{22}$H$_{26}$O$_9$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>14.26</td>
<td>39.29</td>
<td>3.87</td>
<td>%</td>
</tr>
<tr>
<td>found:</td>
<td>14.52</td>
<td>39.16</td>
<td>3.89</td>
<td>%</td>
</tr>
</tbody>
</table>
Hydrolysis of TiCl₃[(CH₃)₃CCO₂] in pyridine (Ti : H₂O ratio 2:1)

TiCl₃ [(CH₃)₃CCO₂] (1.386 g, 5.43 mmol) was dissolved in pyridine (30 cm³) containing H₂O (0.097 cm³, 5.45 mmol). On stirring the yellow solution for 10 minutes a pale yellow precipitate formed. The supernatant liquid was removed, and the solid washed with petroleum ether (2 x 30 cm³) and dried in vacuo for 4 hours. (Yield based on Ti₂Cl₅(C₅H₅N)₄O : 2.08g, 63%)

i.r. 1610 (m) 1560 (s) 1480 (m) 1445 (m) 1430 (m) 1415 (m) 1220 (m) 1150 (s) 1070 (m) 1040 (m) 1020 (m) - 1000 (W) 970 (w) 940 (w) 780 (s) 700 (s) 640 (m) 600 (m) 530 (m) 500 (m) 460 (m) 430 (m) 380 (s) 340 (s) 325 (m) 290 (m) 240 (m) cm⁻¹

¹H NMR 9.0 (d)(2H), 8.45 (t) (1H), 7.95 (t) (2H) p.p.m.

Analysis based on Ti₂Cl₅C₂OH₂N₄O:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>15.83</td>
<td>39.65</td>
<td>3.32</td>
<td>9.25</td>
<td>%</td>
</tr>
<tr>
<td>found:</td>
<td>14.17</td>
<td>41.80</td>
<td>5.53</td>
<td>7.78</td>
<td>%</td>
</tr>
</tbody>
</table>

Hydrolysis of TiCl₃[(CH₃)₃CCO₂]. C₅H₅N (Ti : H₂O ratio 2:1)

TiCl₃[(CH₃)₃CCO₂] Py (1.818g, 5.44 mmol) was suspended in C₆H₅Cl (30 cm³) containing H₂O (0.049 cm³, 2.72 mmol). The suspension was heated at 130°C for 5 hours. The yellow solid was filtered off and was found to be unreacted starting material. The yellow solution was pumped to dryness producing an orange solid. The orange solid was recrystallised
from CH₂Cl₂, washed with petroleum ether (3 x 20 cm³) and dried in vacuo for 4 hours. (Yield based on Ti₂Cl₄[(CH₃)₃CCOO]₂ C₅H₅NO:0.56g, 38%).

i.r. 1640 (w) 1610 (m) 1540 (s) 1485 (s) 1230 (s)
 1200 (w) 1170 (w) 1125 (w) 1070 (w) 1050 (w)
 1025 (w) 790 (m) 750 (m) 680 (m) 610 (m)
 450 (m) 385 (m) 325 (w) 300 (w) 270 (w) cm⁻¹

¹H NMR 9.05(d) (2H), 8.6 (t) (1H), 8.1 (t) (2H), 1.25 (ms) (18H) p.p.m.

TITANIUM-MAGNESIUM COMPLEXES

Reaction of Mg(CH₃CO₂)₂ and TiCl₄

TiCl₄ (3.8 cm³, 34.8 mmol) was added slowly to a magnetically stirred suspension of anhydrous Mg(CH₃CO₂)₂ (4.948g, 34.8 mmol) in CHCl₃ (30 cm³). The resulting yellow suspension was heated at 50°C for 4 hours. The cream solid was filtered off, washed with petroleum ether (3 x 20 cm³) and dried in vacuo for 3 hours. Magnesium analysis of the solid shows it to be unreacted Mg(CH₃CO₂)₂

Analysis for MgC₄H₆O₄:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg</td>
<td></td>
</tr>
<tr>
<td>calculated:</td>
<td>17.08%</td>
</tr>
<tr>
<td>found:</td>
<td>17.52%</td>
</tr>
</tbody>
</table>
Preparation of TiMgCl$_4$(C$_6$H$_5$CO$_2$)$_2$(CH$_3$COOCH$_2$H$_5$)$_2$

TiCl$_4$ (1.2cm3, 10.9 mmol) was added dropwise to a magnetically stirred solution of Mg(CH$_3$CO$_2$)$_2$ (1.55g, 10.9 mmol) in EtOAc (30cm3). The resulting yellow solution was heated at 77 °C for 10 hours. The solution was then pumped to dryness giving a yellow solid. The solid was recrystallised from CH$_2$Cl$_2$ (10 cm3) and dried in vacuo for 3 hours. (Yield 3.21g, 47%).

\[
\text{i.r.} \quad 1690 \text{ (sh)} & \quad 1640 \text{ (s)} & \quad 1600 \text{ (m)} & \quad 1520 \text{ (m)} & \quad 1300 \text{ (m)}
\quad 1170 \text{ (m)} & \quad 1090 \text{ (w)} & \quad 1070 \text{ (w)} & \quad 1040 \text{ (m)} & \quad 845 \text{ (m)}
\quad 770 \text{ (w)} & \quad 665 \text{ (m)} & \quad 600 \text{ (m)} & \quad 470 \text{ (b)} & \quad 370 \text{ (b)}
\quad 270 \text{ (sh)} & \quad \text{cm}^{-1}
\]

1H NMR 7.3 - 8.5 (m) (5H), 4.35 (m) (2H), 2.35 (s) (M), 1.35 (t) (3H) p.p.m.

Analysis for TiMgCl$_4$C$_{22}$H$_{26}$O$_8$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Mg</th>
<th>C</th>
<th>H</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>7.58</td>
<td>3.85</td>
<td>41.76</td>
<td>4.11</td>
<td>22.46 %</td>
</tr>
<tr>
<td>found:</td>
<td>8.07</td>
<td>2.55</td>
<td>41.33</td>
<td>4.56</td>
<td>22.01 %</td>
</tr>
</tbody>
</table>

Reaction of TiCl$_3$[(CH$_3$)$_3$CCO$_2$] with MgO

TiCl$_3$[(CH$_3$)$_3$CCO$_2$] (2.722 g, 10.66 mmol) was added to a magnetically stirred suspension of MgO (0.43g, 10.66 mmol) in EtOAc (45cm3). The yellow suspension was heated at 77 °C for 8 hours. The resulting yellow solution was pumped to dryness giving a yellow solid. The solid was washed with hexane (3 x 30 cm3) and dried in vacuo for 4 hours.
i.r. 1755 (m) 1700 (b) 1650 (b) 1520 (sh) 1425 (sh) 1320 (m) 1240 (m) 1170 (w) 1120 (w) 1050 (m) 860 (w) 790 (w) 620 (m) 480 (b) 350 (w) 310 (w) cm⁻¹

¹H NMR 4.3 (m) (2H), 2.2 (s) (3H), 1.05 - 1.5 (m) (12H) p.p.m.

Analysis for TiCl₃C₉H₁₇O₄· MgO mixture:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>C</th>
<th>H</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>12.49</td>
<td>28.17</td>
<td>4.46</td>
<td>6.33%</td>
</tr>
<tr>
<td>found:</td>
<td>12.11</td>
<td>30.33</td>
<td>5.34</td>
<td>5.43%</td>
</tr>
</tbody>
</table>

Preparation of a standard MgCl₂ solution

A standard solution of anhydrous MgCl₂ in EtOAc (0.5M) was prepared by adding EtOAc (500 cm³) to solid anhydrous MgCl₂ (24g, 0.25M) and refluxing for 18 hours. All the solid dissolves but on standing white crystalline deposits formed. The deposits are the ethyl acetate adduct of MgCl₂.

Reaction of the MgCl₂ standard solutions with TiCl₄, THF and p-CH₃C₆H₄COOH

TiCl₄ (5.5 cm³, 50 mmol) was added slowly to a standard solution of MgCl₂ in EtOAc (50 cm³, 25 mmol). The resulting yellow solution was heated at 70 °C for 4 hours. The solution was allowed to cool and p-CH₃C₆H₄COOH (6.8g, 50 mmol) was added. The red solution was stirred and heated at 70 °C for 2 hours. The volume of solvent was reduced by
pumping and THF (20 cm3) was added. This caused the immediate precipitation of yellow solid. The supernatant liquid was removed and the solid washed with petroleum ether and dried in vacuo for 3 hours. The solid can be recrystallised from CH$_2$Cl$_2$ to give small yellow crystals. A magnesium analysis of the solid shows it contains no magnesium at all.

Preparation of TiMgCl$_6$(C$_6$H$_5$CO$_2$)(EtOAc)$_2$

A MgCl$_2$ standard solution in EtOAc (21.5 cm3, 10.75 mmol) was added to a magnetically stirred solution of TiCl$_3$(C$_6$H$_5$CO$_2$) (2.96g, 10.75 mmol) in EtOAc (20 cm3). The resulting yellow solution was heated at 55 °C for 4 hours. The solution was then filtered and pumped to dryness giving a yellow solid. The solid was washed with petroleum ether (4 x 20 cm3) and dried in vacuo for 3 hours. If the solid is heated it turns a greenish-yellow colour. (Yield 3.9g, 62%).

i.r.
1680 (m) 1600 (m) 1570 (m) 1490 (m) 1400 (sh)
1305 (s) 1180 (m) 1150 (m) 1100 (w) 1070 (w)
1040 (m) 1025 (m) 1010 (w) 940 (w) 850 (s)
820 (w) 770 (sh) 685 (w) 670 (m) 600 (s)
490 (s) 375 (b) cm$^{-1}$

1H NMR 7.55 - 8.2 (m) (5H), 4.4 (m) (4H), 2.35 (s) (6H), 1.35 (t) (6H) p.p.m.

Analysis for TiMgCl$_5$C$_{15}$H$_{21}$O$_6$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Mg</th>
</tr>
</thead>
</table>
| calculated: | 8.74 | 4.43 | %
| found: | 8.53 | 4.22 | %

Preparation of TiMgCl$_6$(HOC$_6$H$_4$CO$_2$H)(EtOAc)$_2$

A standard solution of MgCl$_2$ in EtOAc (11.5 cm3, 5.75 mmol) was added to a magnetically stirred solution of TiCl$_4$ (0.65 cm3, 5.9 mmol) in EtOAc (30 cm3). The yellow solution was heated at 70°C for 5 hours, allowed to cool and filtered. p-HOC$_6$H$_4$COOH (0.8g, 5.8 mmol) was added to the stirred solution giving an immediate orange precipitate. The supernatant liquid was removed and the solid washed with hexane (3 x 20 cm3) and dried in vacuo for 4 hours. (Yield 2.31g, 67%).

i.r.
3390 (b) 1680 (s) 1605 (sh) 1595 (s) 1490 (sh)
1415 (sh) 1260 (b) 1160 (m) 1100 (w) 1040 (m)
1010 (w) 900 (m) 860 (m) 770 (m) 680 (b)
615 (m) 545 (w) 470 (m) 410 (m) 350 (sh)
280 (w) cm$^{-1}$

Analysis for TiMgCl$_6$C$_{15}$H$_{22}$O$_7$:

<table>
<thead>
<tr>
<th></th>
<th>Ti</th>
<th>Mg</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>calculated:</td>
<td>8.01</td>
<td>4.06</td>
<td>%</td>
</tr>
<tr>
<td>found:</td>
<td>8.28</td>
<td>3.636</td>
<td>%</td>
</tr>
</tbody>
</table>

X-ray Crystallography

Single crystals suitable for X-ray structure determinations were obtained by the liquid diffusion method. A small amount of compound is dissolved in an appropriate solvent in a small tube and hexane layered carefully onto the solution. As the hexane diffuses into the solution crystals form at the interface. The crystals are then mounted under argon in 0.5 mm or 0.3 mm Lindemann tubes.
Data was collected with a Syntex P21 four circle diffractometer and the structures solved using SHELXTL\(^{(18)}\) on a Data General DG 30 computer system.

Molecular Weights

Molecular weights were determined using the freezing point depression method. A weighed sample of compound was dissolved in benzene (10 cm\(^3\)) and the solution introduced into the N\(_2\) filled freezing point measurement device. (Figure 6.1). The solution was then frozen by an ice/water bath while being stirred. The freezing point of the solution was noted and compared to that of pure benzene to determine the freezing point depression. The molecular weight was then calculated using the formula:

\[M_B = \frac{F W_B}{\Delta T} \]

\(M_B \) = Molecular Weight, \(F \) = freezing point depression constant for C\(_6\)H\(_6\), \(W_B \) = mass of compound used and \(\Delta T \) = freezing point depression.
Figure 6.1 Freezing Point Measurement Device

Thermometer
\begin{center}
\begin{tikzpicture}
 \draw[->] (0,0) -- (1,0) node[midway,above] {Stirrer};
 \draw[->] (1,0) -- (2,0) node[midway,above] {Solution};
 \draw[->] (2,0) -- (3,0) node[midway,above] {Freezing mixture};
\end{tikzpicture}
\end{center}
Analytical Techniques

Titanium was determined by using the absorbance of titanium (IV) peroxo-species at 410 nm in acid solution. At titanium concentrations between 10-100 p.p.m. the yellow or orange solutions obey the Beer-Lambert Laws.

A small amount of the test sample (0.01-0.1 g) was hydrolysed using concentrated H₂SO₄. The volume of the solution was made up to 99 cm³ using an approximately 50/50 mixture of 2M H₂SO₄ and distilled water. Then 1 cm³ of 20 volume H₂O₂ was added. The absorbance of the resulting yellow solution was measured with a Pye-Unicam SP6-250 Spectrophotometer in a 1 cm polycarbonate cuvette and compared with standards, using the graph shown in figure 6.2.
Magnesium was determined by atomic absorption spectrophotometry, using a Varian AA6 instrument. Magnesium was detected in the concentration range 0.5 μg/ml - 2.0 μg/ml at a wavelength of 285.4nm using a N2O/C2H2 flame.

The test samples were prepared by dissolving an appropriate amount of compound in concentrated H2SO4 adding 5 cm3 of a standard solution of KHSO4 (80g KHSO4, 40 cm3 H2SO4, 400 cm3 H2O) and making the volume up to 100 cm3 with distilled water. The instrument was calibrated using solutions made up from commercially available standard solutions (B.D.H. Ltd.).

Some chloride analysis was performed using the Volhard method. The sample (~0.1g) was hydrolysed with dilute HNO3 and made up to 100
cm\(^3\). Excess AgNO\(_3\) solution was added to aliquots of the sample solution and the resulting precipitate of AgCl coagulated with nitrobenzene. The unreacted AgNO\(_3\) was then titrated against standard KSCN solution with a drop of [NH\(_4\)][Fe(SO\(_4\))\(_2\)] as indicator. The solution becomes red at the end point as [Fe(SCN)\(_6\)]\(^3-\) is formed.

Carbon, hydrogen and nitrogen were determined commercially by either Elemental Micro-Analysis Ltd., Beaworthy, Devon or Butterworth Laboratories Ltd., Teddington, Middlesex. Sulphur was determined commercially by Butterworth Laboratories Ltd., Teddington, Middlesex.

Instrumentation

Routine \(^1\)H NMR spectra were recorded using a Perkin Elmer R34 spectrometer. High resolution and variable temperature \(^1\)H NMR spectra (400 MHz) were recorded using a Bruker WH400 spectrometer as were \(^1\)C (100 MHz) and \(^1\)\(^7\)O (54.2 MHz) NMR spectra.

If the NMR sample was insoluble in CDCl\(_3\) then CD\(_2\)Cl\(_2\) or C\(_6\)D\(_6\) were used as solvents. Deuterated toluene was used for variable temperature work. Infra-red spectra were recorded in the range 4000-200 cm\(^{-1}\) using a Perkin-Elmer 580B spectrophotometer with samples as mulls in nujol between CsI plates, unless otherwise stated.
APPENDIX 1.
Appendix 1

The Nomenclature of Bidentate Bridging Carboxylates

The present system of naming bidentate bridging carboxylates was proposed in 1959 by Martin and Waterman. The nomenclature was an extension of that used at the time in organic chemistry to describe oximes and diazoates. The syn and anti forms of an oxime are illustrated below along with the corresponding carboxylate species.

In these cases the positions of R, and OH are examined relative to the C=\(N \) bond, if they are cis the oxime is syn, if trans the oxime is anti. Similarly the positions of the metal and O' are examined relative to the C-O single bond in the carboxylate. Repeating the process for the other metal atom and O relative to the C-O' single bond gives the familiar syn-syn, anti-syn, anti-anti nomenclature.

However current organic nomenclature does not use syn and anti but the prefixes Z and E. (Z from German zusammen = together, E from German entgegen = opposite). The groups to be compared are placed in order using the Sequence Rules. Table (A1.1).
If the two ligands of highest precedence are on the same side of the C=N axis the compound is Z, if on opposite sides the compound is E.

In the case of the metal carboxylates the two ligands of highest precedence are the metal and O'. These are compared relative to the C-O axis.

So the syn-syn mode becomes Z,Z, the anti-syn mode becomes E,Z and the anti-anti mode becomes E,E.

Unfortunately if the first atom in the alkyl chain R has an atomic number greater than eight then the syn-syn mode becomes E,E, the anti-syn mode Z,E and the anti-anti mode Z,Z.

This could become confusing so an alternative nomenclature system is presented here:

Ester Type Nomenclature.

It is proposed that the current organic nomenclature for carboxylate esters be used to describe bidentate bridging carboxylates. The esters exist as two rotamers (A and B below) differing only due to rotation around the C-O single bond.

\[R_1 - C - O - R_2 \]

A.

\[R_1 - C - O - R_2 \]

B.
Rotamer A is the \textit{s-cis} or \textit{syncoplanar} form. Rotamer B is the \textit{s-trans} or \textit{antiperiplanar} form. In the syncoplanar form R_2 and $=O$ are on the same side of the C-O axis. In the antiperiplanar form R_2 and $=O$ are on opposite sides of the C-O axis.

In the carboxylate case R_2 is a metal and $=O$ becomes the other carbon-oxygen single bond. Therefore the \textit{syn-syn} mode becomes syncoplanar-syncoplanar, the \textit{anti-syn} mode becomes antiperiplanar-syncoplanar and the \textit{anti-anti mode} becomes antiperiplanar-antiperiplanar.

This nomenclature has several advantages:

(i) It correctly identifies the carboxylate as being a planar species avoiding confusion with the \textit{syn/anti} nomenclature used in ethane derivatives.

(ii) It may be used to name unidentate carboxylates giving precise information about the orientation of the C=O group.

(iii) The nomenclature may be conveniently abbreviated, syncoplanar-syncoplanar to \textit{syn-syn}, antiperiplanar-syncoplanar to \textit{anti-syn} and antiperiplanar-antiperiplanar to \textit{anti-anti}. This allows easy translation from the present nomenclature.
Table A1.1: The Sequence Rules.

(i) Ligands are arranged in order of decreasing atomic number
 e.g. Cl > O > C > Li etc.
(ii) Isotopes are arranged in order of decreasing mass number
 e.g. 37Cl > 35Cl.
(iii) A lone pair of electrons is placed below H in the precedence order.
(iv) Double or triple bonds are treated by assuming that each bonded
 atom is duplicated or triplicated.
(v) If comparison of the atoms bonded to the centre of interest does not
 yield a precedence then the atoms bonded to one of the equivalent
 atoms are considered.
REFERENCES

7. Solway and Cie, Belg. Pat., 780, 758 (Chem. Abstr., 78, 16791)

Guidelines

The guidelines used when preparing this thesis were:

University of Warwick Department of Chemistry, *Guidelines to assist candidates in matters related to their work for a higher degree by research and in the preparation of their theses*, October 1986.