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Pattern formation in microbial colonies of competing strains under purely space-limited population
growth has recently attracted considerable research interest. We show that the reproduction time
statistics of individuals has a significant impact on the sectoring patterns. Generalizing the standard
Eden growth model, we introduce a simple one-parameter family of reproduction time distributions
indexed by the variation coefficient δ ∈ [0, 1], which includes deterministic (δ = 0) and memory-
less exponential distribution (δ = 1) as extreme cases. We present convincing numerical evidence
and heuristic arguments that the generalized model is still in the KPZ universality class, and the
changes in patterns are due to changing prefactors in the scaling relations, which we are able to
predict quantitatively. At the example of S. cerevisiae, we show that our approach using the variation
coefficient also works for more realistic reproduction time distributions.

PACS numbers: 87.18.Hf, 89.75.Da, 05.40.-a, 61.43.Hv

I. INTRODUCTION

Spatial competition is a common phenomenon in
growth processes and can lead to interesting collective
phenomena such as fractal geometries and pattern for-
mation [1–3]. This is relevant in biological contexts such
as range expansions of biological species [4, 5] or growth
of cells or microorganisms, as well as in social contexts
such as the dynamics of human settlements or urbaniza-
tion [6]. These phenomena often exhibit universal fea-
tures which do not depend on the details of the particu-
lar application, and have been studied extensively in the
physics literature [2, 3, 7–10].

Our main motivating example will be growth of mi-
crobes in two dimensional geometries, for which recently
there have been several quantitative studies. In general,
the growth patterns in this area are influenced by many
factors, such as size, shape and motility of the individual
organism [11], as well as environmental conditions such
as distribution of resources and geometric constraints
[12, 13], which in turn influence the proliferation rate or
motility of organisms [14]. We will focus on cases where
active motion of the individuals can be neglected on the
timescale of growth, which leads to static patterns and is
also a relevant regime for range expansions. We further
assume that there is no shortage of resources, and growth
and competition of species is purely space limited and
spatially homogeneous. This situation can be studied
for microbial colonies grown under precisely controlled
conditions on petri dish with hard agar and rich growth
medium. Under these conditions one expects the colony
to form compact Eden-type clusters [12], which has re-
cently been shown for various species including S. cere-
visiae, E. coli, B. subtilis and S. marcescens [14, 15].

The Eden model [16] has been introduced as a basic
model for the growth of cell colonies. It has later been
shown to be in the KPZ universality class [3, 7, 17, 18],
which describes the scaling properties of a large generic

class of growth models. In recent detailed studies of
E. coli and S. cervisiae [14, 15, 19, 20] quantitative evi-
dence for the KPZ scaling of growth patterns has been
identified. The models used in these studies ignored all
microscopic details reproduction, such as anisotropy of
cells [21], and could therefore not explain or predict dif-
ferences observed for different species. Nevertheless, they
provided a good reproduction of the basic features such as
KPZ exponents, which is a clear indication that segrega-
tion itself is an emergent phenomenon. Fig. 1 shows dif-
ferences in growth patterns in a circular geometry taken
from [15] for E. coli and S. cervisiae. For both species
the microbial populations are made of two strains, which
are identical except having different fluorescent labeling.
Reproduction is asexual, and the fluorescent label car-
ries over to the offspring. At the beginning of the ex-
periments the strains are well mixed, but during growth
rough sector shaped segregated regions develop. The
qualitative emergence of these segregation patterns and
connections to annihilating diffusions has been studied in
[15, 19, 20, 22], ignoring all details specific for a particular
species.

For S. cervisiae the domain boundaries are less rough
when compared to E. coli, leading to a finer pattern con-
sisting of a larger number of sectors. In general, this
is a consequence of differences in the mode of reproduc-
tion and shapes of the microbes, which introduce local
correlations that are not present in simplified models.
In this paper we focus on the effect of time correlations
introduced by reproduction times that are not exponen-
tially distributed (as would be in continuous time Marko-
vian simulations), but have a unimodal distribution with
smaller variation coefficient. This is very relevant in most
biological applications (see e.g. [23–25]), and even in
spatially isotropic systems the resulting temporal corre-
lations lead to more regular growth and therefore smaller
fluctuations of the boundaries, with an effect on the pat-
terns as seen in Fig. 2.
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(a) (b)

FIG. 1: (Color online) Fluorescent images of colonies of (a)
E. coli and (b) S. cerevisiae. The scaling properties of both
patterns are believed to be in the KPZ universality class, and
the differences are due to microscopic details of the mode of
reproduction and shape of the micro-organisms. The images
have been taken with permission from [15], copyrighted (2007)
by the National Academy of Sciences, U.S.A.

To systematically study these temporal correlations,
we introduce a generic one-parameter family of reproduc-
tion times, explained in detail in Section II. We establish
that the growth clusters and competition interfaces still
show the characteristic scaling within the KPZ univer-
sality class, and the effect of the variation coefficient is
present only in prefactors. We predict these effects quan-
titatively and find good agreement with simulation data;
these results are presented in Section III. More realistic
reproduction time distributions with a higher number of
parameters are considered in Section IV, where we show
that to a good approximation the effects can be sum-
marized in the variation coefficient and mapped quan-
titatively onto our generic one-parameter family of re-
production times. Therefore, our results are expected to
hold quite generally for unimodal reproduction time dis-
tributions, and the variation coefficient alone determines
the leading order statistics of competition patterns.

II. THE MODEL

For regular reproduction times with small variation co-
efficient the use of a regular lattice would lead to strong
lattice effects that affect the shape of the growing clus-
ter. To avoid these we use a more realistic Eden growth
model in a continuous domain in R

2 with individuals
modelled as circular hard-core particles with diameter
1, since we want to study purely the effect of time cor-
relations. This leads to generalized Eden clusters which
are compact with an interface that is rough due to the
stochastic growth dynamics.
Let B(t) denote the general index set of particles p

at time t, (xp, yp) ∈ R
2 is the position of the centre of

particle p, and sp ∈ {1, 2} is its type. We write B(t) =
B1(t)∪B2(t) as the union of the sets of particles of type
1 and 2. We also associate with each particle the time
it tries to reproduce next, Tp > 0. Initially, Tp are i.i.d.
random variables with distribution Fδ with parameter

(a) (b)

FIG. 2: (Color online) A smaller variation coefficient δ in
reproduction times (see (4) and (6)) leads to more regu-
lar growth, smoother domain boundaries and finer sectors.
Shown are simulated circular populations with (a) δ = 1 and
(b) δ = 0.1. Both colonies have an initial radius of r0 = 50,
and they are grown up to simulation time t = 50 leading to
final radii of approximately 120 (a) and 95 (b).

δ ∈ [0, 1], which is explained in detail below. After each
reproduction Tp is incremented by a new waiting time
drawn from the same distribution. Note that we focus
entirely on the neutral case, i.e. the reproduction time
is independent of the type and both types have the same
fitness. We describe the dynamics below in a recursive
way.
Following a successful reproduction event of particle p

at time Tp, a new particle with index q = |B(Tp−)| + 1
is added with the same type sq = sp,

Bsp(Tp+) = Bsp(Tp−) ∪ {q} (1)

Here B(T−) and B(T+) denote the index set just before
and just after time T . The position of the new particle
is given by

(xq , yq) = (xp, yp) + (cosφ, sinφ) , (2)

where φ ∈ [0, 2π) is drawn uniformly at random. This
is subject to a hard-core exclusion condition for circular
particles, i.e. the euclidean distance to all other particle
centres has to be at least 1, as well as to other constraints
depending on the simulated geometry as explained be-
low. Note that in our model the daughter cell touches
its mother, which is often realistic but in fact not essen-
tial, and the distance could also vary stochastically over
a small range. The new reproduction times of mother
and daughter are set as

Tp 7→ T old
p + T , Tq = T old

p + T ′ , (3)

where T, T ′ are i.i.d. reproduction time intervals with
distribution Fδ. There can be variations on this where
mother and daughter have different reproduction times,
which are discussed in Section IV. The next reproduc-
tion event will then be attempted at t = min

{

Tq : q ∈
B(Tp+)

}

. Reproduction attempts can be unsuccessful, if
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there is no available space for the offspring due to block-
age by other particles. In this case the attempt is aban-
doned and Tp is set to ∞, as due to the immobile nature
of the model this particle will never be able to reproduce.

The initial conditions for spatial coordinates and types
depend on the situation that is modelled. In this paper
we mostly focus on an upward growth in a strip of length
L with periodic boundary conditions on the sides, where
we take B(0) = {1, . . . , L} with (xp, yp) = (p, 0), for all
p ∈ B(0). The initial distribution of types can be either
regular or random depending on whether we study single
or interacting boundaries, and will be specified later.

In Section III for our main results we use reproduction
times

T ∼ 1− δ + Exp(1/δ) , δ ∈ (0, 1] , (4)

i.e. T has exponential distribution with a time lag 1 −
δ ∈ [0, 1) and with mean fixed to 〈T 〉 = 1 for all δ.
The corresponding cumulative distribution function Fδ

is given by

Fδ(t) =

{

0 , t ≤ 1− δ
1− e−(t−1+δ)/δ , t ≥ 1− δ

. (5)

The variation coefficient of this distribution is given by
the standard deviation divided by the mean, which turns
out to be just

√

〈T 2〉 − 〈T 〉2
〈T 〉 =

δ

1
= δ . (6)

With this family we can therefore study reproduction
which is more regular then exponential with a fixed av-
erage growth rate of unity (equivalent of setting the unit
of time).

For δ = 1 this is a standard Eden cluster, but δ < 1
introduces time correlations. While the correlations af-
fect the fluctuations, we present convincing evidence that
they decay fast enough not to change the fluctuation ex-
ponents, so the system remains in the KPZ universality
class. Furthermore we make quantitative predictions on
the δ-dependence of non-universal parameters and com-
pare them to simulations. The more synchronized growth
leads to effects similar to the ones seen in experiments
(Fig. 1). To give a visual impression of the patterns
produced by the model, we show in Fig. 2 two growth
patterns with δ = 1 and 0.1. The initial condition is a
circle, and the types are distributed uniformly at random.
The patterns are qualitatively similar to the experimen-
tal ones in Fig. 1, and more regular growth leads to a
finer sector structure. The same effect is shown on Fig. 3
for the simulations in a linear geometry with periodic
boundary conditions, which is analyzed quantitatively in
the next Section. Smaller values of δ also lead to more
compact growth and smaller height values reached in the
same time.

(a) (b)

FIG. 3: (Color online) Populations in a linear geometry with
periodic boundary conditions in lateral direction with (a) δ =
1 and (b) δ = 0.1. Both populations have lateral width L =
300, and the colonies are grown to a simulation time t ≈ 50,
leading to heights of approximately 70 (a) and 40 (b).

III. MAIN RESULTS

A. Quantitative analysis of the colony surface

In this Section we provide a detailed quantitative anal-
ysis of the δ family of models in linear geometry with
periodic boundary conditions (see Fig. 3), starting with
the dynamical scaling properties of the growth interface.
We regularize the surface to be able to define it as a

function of the lateral coordinate x and time t as

y(x, t) := max
{

yp : p ∈ B(t), |xp − x| ≤ 1
}

. (7)

In case of overhangs (which are very rare) we take the
largest possible height, and due to the discrete nature of
our model this leads to a piecewise constant function.
The surface of a standard Eden growth cluster is known

to be in the KPZ universality class [16, 18], i.e. a suitable
scaling limit of y(x, t) with vanishing particle diameter
fulfills the KPZ equation

∂ty(x, t) = v0 + ν∆y(x, t) +
λ

2
(∇y(x, t))2 +

√
Dη(x, t).

(8)
Here v0, of the order of unity, corresponds to the growth
rate of the initial flat surface (related to the mean repro-
duction rate and some geometrical effects), the surface
tension term with ν > 0 represents surface relaxation,
and the nonlinear term represents the lowest order con-
tribution to lateral growth [18]. The fluctuations due
to stochastic growth are described by space-time white
noise η(x, t), which is a mean 0 Gaussian process with
correlations

〈

η(x, t)η(x′, t′)
〉

= δ(x− x′)δ(t− t′). (9)

We denote the average surface height by

h(t) :=
1

L

∫ L

0

y(x, t) dx , (10)

which is a monotone increasing function in t. It is also
asymptotically linear and therefore we will later also use



4

10
−5

10
−4

10
−3

10
−2

10
−1

10
−2

10
−1

t/Lz

S(
t)

/L
α

 

 

δ=1

δ=0.8

δ=0.6

δ=0.4

δ=0.2

FIG. 4: (Color online) Family-Vicsek scaling (12) of the sur-
face roughness S(t). The data collapse under rescaling with
α = 1/2 and z = 3/2 occurs in a scaling window which is
narrower for small δ due to intrinsic correlations. The differ-
ent symbols correspond to different values of δ, and the color
represents system size, L = 1500 (blue) and L = 4000 (red).
The dashed lines indicate the expected slope β = 1/3. The
data for L = 1500 has been averaged over 100 samples and
for L = 4000 over 30 samples. The error bars are comparable
to the size of the symbols.

h as a proxy for time. The δ-dependence of the average
growth velocity of height as seen in Fig. 3 does not lead
to leading order contributions to the statistical properties
of the surface or the structure of sectoring patterns.
The roughness of the surface is given by the root mean

squared displacement of the surface height as a function
of t [3, 10], defined as

S(t) =
〈 1

L

∫ L

0

(

y(x, t)− h(t)
)2
dx

〉1/2

. (11)

The main properties of the surface y(x, t) can then be
characterized by the Family-Vicsek scaling relation of the
roughness

S(t) = Lαf(t/Lz) , (12)

where the scaling function f(u) has the property

f(u) ∝
{

uβ u ≪ 1
1 u ≫ 1

. (13)

Such a scaling behaviour has been shown for many dis-
crete models including ballistic deposition and continuum
growth [3, 10, 18, 26, 27], and holds also for other uni-
versality classes such as Edward Wilkinson. For the KPZ
class in 1+1 dimensions the saturated interface roughness
exponent is α = 1/2, the growth exponent is β = 1/3,
and the dynamic exponent is z = α/β = 3/2.
Fig. 4 shows a data collapse for the roughness S(t) for

two system sizes, and for a number of different values
of δ. As δ gets smaller, the surface becomes less rough

10
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10
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1
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FIG. 5: (Color online) The height-height correlation function
C(l, t) for L = 4000 at t = 11000 for various values of δ. The
data has been averaged over 30 samples, and the error bars
are comparable to the size of the symbols. The dashed lines
indicate the expected slope 1/2.

due to a more synchronized growth. The dashed lines
indicate the power law growth with exponent β = 1/3 in
the scaling window. This window ends around t/Lz ≈ 1
due to finite size effects, where the lateral correlation
length reaches the system size and the surface fluctua-
tions saturate. For small t the system exhibits a transient
behaviour before entering the KPZ scaling due to local
correlations resulting from the non-zero particle size and
stochastic growth rules. As we quantify later, these cor-
relations are much higher for more synchronized growth
at small δ, which leads to a significant increase in the
transient regime. The transient time scale is indepen-
dent of system size and vanishes in the scaling limit, so
that the length of the KPZ scaling window increases with
L. This behaviour can be observed in Fig. 4 where for
the smallest value δ = 0.2 the scaling regime is still hard
to identify for the accessible system sizes.
Another characteristic quantity is the height-height

correlation function defined as [3, 28, 29]

C(l, t) =
〈 1

L

∫ L

0

(y(x, t) − y(x+ l, t))2dx
〉1/2

. (14)

For a KPZ surface in 1 + 1 dimensions this obeys the
scaling behaviour

C(l, t) ∼
{

( D
2ν l)

1/2 l ≪ ξ‖(t)
(

D
2ν

)2/3
(λt)1/3 l ≫ ξ‖(t)

, (15)

where ξ‖(t) is defined to be the lateral correlation length
scale and takes the form [3, 29, 30]

ξ‖(t) ∼ (D/2ν)1/3(λt)2/3 . (16)

A detailed computation can be found in Appendix B.
Initially, the behaviour of C(l, t) grows as a power-law
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FIG. 6: (Color online) Dependence of the KPZ parameters
D/(2ν) on δ. Data are obtained from (15) by fitting the pref-
actor of the power law in Fig. 5, using that the proportionality
constant is very close to 1 (cf. derivation (B11) in the Ap-
pendix). The data are in good agreement with the prediction
(21) with fitted parameters ǫ ≈ 0.42 andD/(2ν)(δ = 1) ≈ 1.1.

with l, and when l exceeds the lateral correlation length
ξ‖(t) it reaches a value that depends on the time t and the
parameters of (8). This is shown in Fig. 5, where C(l, t)
is plotted for various values of δ, and the data agree well
with the exponent α = 1/2 for the KPZ class indicated
by dashed lines.
The time correlations introduced by the partial syn-

chronization can be estimated by considering a chain of
N growth events where each particle is the direct de-
scendant of the previous one. Each added particle corre-
sponds to a height change ∆yi, and has an associated
waiting time Ti with distribution (4). During time t
there are N(t) growth events, and since the average re-
production time is 1 with variance δ2, we have 〈N(t)〉 ≈ t
and var(N(t)) ≈ δ2t. The height of the last particle is

yN(t) =
∑N(t)

i ∆yi, leading to

var(yN(t)) = 〈∆yi〉2 var(N(t)) + 〈N(t)〉 var(∆yi) . (17)

The terms in this expression correspond to two sources
of uncertainty: (i) due to the randomness in Ti the num-
ber of growth events vary with var(N(t)), and (ii) the
individual height increments are random with var(∆yi).
This leads to

var(yN(t)) ≈ t 〈∆yi〉2(δ2 + ǫ2) , (18)

where ǫ =
√

var(∆yi)/〈∆yi〉 denotes the variation coeffi-
cient of the height fluctuations due to geometric effects.
We define the correlation time τ as the amount of time

by which the uncertainty of the height of the chain be-
comes comparable to one particle diameter, var(yN(τ)) =
O(1). Since 〈∆yi〉 is largely independent of δ (cf. Ap-
pendix A), the time correlation induces a fixed intrinsic

vertical correlation length

τ ∼ 1

δ2 + ǫ2
(19)

in the model. This correlation length reduces fluctuations
and leads to an increase in the saturation time tsat of
the system, namely tsat/τ ∼ Lz, a modification of the
usual relation with the system size L. Analogous to the
standard derivation of the time-dependence of the lateral
correlation length [3], this leads to

ξ‖(t) ∼ (t/τ)1/z . (20)

Together with (16) from the behaviour of the correlation
length, we expect

D/(2ν) ∼ (δ2 + ǫ2)2 , (21)

since λ turns out to be largely independent of δ. This
is shown to be in very good agreement with the data
in Fig. 6, for fitted values of ǫ and a prefactor. The fit
value for ǫ and the ratio D/(2ν) for δ = 1 (the usual
Eden model) are compatible with simple theoretical ar-
guments (see Appendix A). So the very basic argument
above to derive an intrinsic vertical correlation length
explains the δ-dependence of the surface properties very
well. Measuring height in this intrinsic length scale, we
observe a standard KPZ behaviour with critical expo-
nents being unchanged, since the intrinsic correlations
are short range (i.e. decay exponentially on the scale τ).
This is in contrast to effects of long-range correlations
where the exponents typically change, see e.g. studies
with long-range temporally correlated noise [31–33] or
memory and delay effects using fractional time deriva-
tives and integral/delay equations [34–36].

B. Domain boundaries

In this section we derive the superdiffusive behaviour
of the domain boundaries between the species from the
scaling properties of the interface. Since the boundaries
grow locally perpendicular to the rough surface, they are
expected to be superdiffusive with Hurst exponent 2/3,
which has been shown for a solid on solid growth model in
[37] and has been observed in [15] for experimental data.
In order to confirm this quantitatively for our model,
we perform simulations with initial conditions B1(0) =
{1, . . . , [L/2]} and B2(0) = {[L/2] + 1, . . . , L}, i.e. the
initial types are all red on the left half and all green on
the right half of the linear system. Therefore we have
two sector boundaries X1 and X2 with initial positions
X1(0) = 1/2 and X2(0) = [L/2] + 1/2. After growing
the whole cluster, we define the boundary as a function
of height via the leftmost particle in a strip of width 2
and medium height h:

X1(h) = min
{

xp + 1/2 : |yp − h| < 1, p ∈ B1

}

X2(h) = min
{

xp + 1/2 : |yp − h| < 1, p ∈ B2

}

, (22)
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FIG. 7: (Color online) Scaling behaviour of the mean square
displacement M(h) (24). The system size is L = 1000 and
the data is averaged over 500 samples and the error bars are
comparable to the size of the symbols. (a) Data collapse of
the normalized quantity M(h)/σ2

δ as a function of height h
for several values of δ. The values in the normalization σ2

δ are
taken from the best fit shown as full line in (b). Each curve
follows a power law with exponent 4/3, the line corresponding

to h4/3 is shown as comparison. (b) The prefactor σ2

δ , where
the data are best fits according to (24). The full line used

for the collapse in (a) follows the prediction (δ2 + ǫ2)4/3 with
fitted ǫ = 0.40, which is compatible with the fit in Fig. 6.

where we take the periodic boundary conditions into ac-
count. The simulations are performed on a system of size
L = 1000, and run until a time of t = 2000, which is well
before the expected time of annihilation, which is of or-
der L3/2 proportional to the saturation timescale in the
KPZ class. Therefore we can treat the sector boundaries
as two independent realizations of the boundary process
(

X(h) : h ≥ 0
)

.

As has been noted already in [37], this process is ex-
pected to follow the same scaling as the lateral correlation

length. For the mean square displacement

M(h) :=
〈

(

X(h)−X(0)
)2
〉

(23)

we therefore get with (16) and (21), using the linear re-
lationship between h and t,

M(h) ≈ σ2
δ h

4/3 ∼ ξ2‖(h) (24)

where σ2
δ ∝ (δ2 + ǫ2)4/3. This prediction is in very good

agreement with data for the scaling of M(h) and its pref-
actor as presented in Fig. 7, and the fit value for ǫ2 is
consistent with the one in Fig. 6. As before, for D/(2ν)
the δ-dependence is absorbed by the prefactor, and the
power law exponent 4/3 for M(h) remains unchanged
from standard KPZ behaviour studied also in [37].
We can further investigate the law of the process

(

X(h) : h ≥ 0
)

. The data presented in Fig. 8(a) clearly
support that X(h) is a Gaussian process. A fractional
Brownian motion with stationary increments seems to
be a natural model for the X(h) in the KPZ scaling
window. This is confirmed by the behaviour of the cor-
relation function 〈X(h + ∆h)X(h)〉, which is shown in
Fig. 8(b) for various δ and two values of the lag ∆h > 0.
For a fractional Brownian motion with mean square dis-
placement (24) we expect

〈

X(h+∆h)X(h)
〉

≈ σ2
δ

2

(

(h+∆h)4/3+h4/3−|∆h|4/3
)

(25)
for all ∆h > 0 and h > 0 sufficiently large to have no
effects from the flat initial condition. For simplicity we
have assumed here that X(0) = 0.
This is in good agreement with the data, and we con-

clude that the sector boundaries can be modeled by frac-
tional Brownian motions with superdiffusive Hurst expo-
nent 2/3 and a δ-dependent prefactor σδ (24).

C. Sector patterns

In [19], and also [20, 22] under the assumption of diffu-
sive scaling, it was shown how the understanding of the
single boundary dynamics leads to a prediction for sector
statistics for well-mixed initial conditions. In this section
we shortly review this approach and show that it carries
over straight away to systems with δ < 1. The sector
boundaries Xi(h) interact by diffusion limited annihila-
tion which drives a coarsening process, as can be seen in
Fig. 3 for two linear populations with different values of
δ. Both systems have the same initial condition with a
flat line of particles of independently chosen types, and
the finer coarsening patterns for smaller values of δ re-
sult from the reduced boundary fluctuations due to the
prefactor σδ (24).
Let N(h) be the number of sector boundaries at height

h ≥ 0 as defined in (22). For systems of diffusion limited
annihilation [38, 39] it is known that N(h) is inversely
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FIG. 8: (Color online) The sector boundaryX(h) behaves like
a fractional Brownian motion. (a) The standardized prob-
ability density function (pdf) of X(h) as a function of the

rescaled argument x/(σδh
2/3) for different heights h and val-

ues of δ. The black solid parabola is the pdf of a standard
Gaussian on a logarithmic scale. (b) The covariance function
〈

X(h+∆h)X(h)
〉

shows the behaviour (25), which is plotted
as the solid black curve. After rescaling we get a data collapse
as a function of h/∆h, which agrees well with the prediction
if h is sufficiently large and the flat boundary conditions be-
come irrelevant. Data are averages over 1000 realizations and
the error bars are comparable to the size of the symbols.

proportional to the root mean square displacement, and
decays according to

〈N(h)〉 ≈ 1
√

4πM(h)
∼ 1

σδ
h−2/3 . (26)

This prediction is confirmed in Fig. 9, where we plot
〈N(h)〉 for various δ, and obtain a data collapse by mul-

tiplying the data with
√

4πσ2
δ/L, [39]. We include the

system size L in the rescaling so that rescaled quantities
are of order 1, and all data collapse on the function h−2/3

without prefactor.
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FIG. 9: (Color online) The average number of sector bound-
aries 〈N(h)〉 follow a power law (26) with exponent −2/3,
which is indicated by the full line. The data are plotted for a
system size L = 1500 and various values of δ (see legend), and

collapse on the function h−2/3 when rescaled by L/
√

4πσ2

δ .
Data are averages over 500 realizations and the error bars are
comparable to the size of the symbols.

Using (26), we can predict the expected number of
sector boundaries at the final height in the simulations
shown in Figure 3. For δ = 1, the final height is h ≈ 70
leading to 〈N(h)〉 ≈ 7.6, and for δ = 0.1, h ≈ 40 with
〈N(h)〉 ≈ 32. These numbers are compatible with the
simulation samples shown which have 6 and 34 sector
boundaries remaining, respectively.
In general, diffusion limited annihilation is very well

understood, and there are exact formulas also for higher
order correlation functions [40], which can be derived
from the behaviour of a single boundary (24). This
demonstrates that the behaviour of populations is funda-
mentally the same for all values of δ and characterized by
the KPZ universality class, and the observed difference
in coarsening patterns can be explained by the functional
behaviour of the prefactors.

IV. REALISTIC REPRODUCTION TIMES

In this section we study the effect of more realistic re-
production time distributions on the sectoring patterns,
and how they can be effectively described by the previ-
ous δ-dependent family of distributions. In particular,
we focus on S. cerevisiae, which is one of the species in-
cluded in [15], and for which reproduction time statistics
is available [23–25] by the use of time lapsed microscopy.
S. cerevisiae cells have largely isotropic shape so that spa-
tial correlations during growth should be minimal, fitting
the assumptions of our previous model. However, when
cells divide the cells the mother cell forms a bud on its
surface which separates from the mother after growth
to become a daughter cell. The mother can then im-
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FIG. 10: (Color online) Comparison of realistic reproduction
times with the δ model. (a) The probability density functions
of reproduction times of mother cells Tr (full red line) and
daughter cells Tm+Tr (dashed red line) with normalized mean
compared to T from (4) with corresponding δ (blue). (b) The
prefactor of the mean squared displacement σ2

δ as introduced
in (24) and Fig. 7. The data correspond to reproduction times
Tr for all cells (denoted M), Tm +Tr for all cells (denoted D)
and the most realistic mixed model (denoted M and D) as
explained in the text. All these cases are consistent with
previous results from Fig. 7.

mediately restart this reproduction process, whereas the
daughter cell has to grow to a certain size in order to
be classed as a mother and to be able to reproduce. We
denote this time to maturity by Tm and the reproduction
time of (mother) cells by Tr.
The results in [23–25] suggest that Gamma distribu-

tions are a reasonable fit for the statistics for Tm and Tr,
where

Tr ∼ ρ0 +Gamma(ρ1, ρ2), (27)

with delay ρ0 > 0. The parameters ρ1, ρ2 denote the
shape and scale of the Gamma distribution, which has a
probability density function

fρ1,ρ2
(t) = tρ1−1 exp (−t/ρ2)

Γ(ρ1)ρ
ρ1

2

, t ≥ 0 .

The time to maturity is distributed as

Tm ∼ Gamma(ρ3, ρ4), (28)

and in [25] data are presented for which the parameters
can be fitted to ρ0 ≈ 1.0, ρ1 ≈ 1.7, ρ2 ≈ 0.51, ρ3 ≈ 9 and
ρ4 ≈ 0.3. The unit of ρ0, ρ2 and ρ4 are hours and ρ1, ρ3
are dimensionless numbers.
The random variables Tm and Tr may be assumed to be
independent and the time until a newly born daughter
cell can reproduce is distributed as the sum Tm+Tr. Note
that the expected value of reproduction times 〈Tr〉 =
ρ0+ρ1ρ2 = 1.86 is smaller than that for times to maturity
〈Tm〉 = ρ3ρ4 = 2.52 but of the same order. The real
time scale for these numbers is hours, but we are only
interested in the shape of these distributions rescaled to
mean 1 like our previous model.

The distribution (4) of δ-dependent reproduction times
can be written as T ∼ 1− δ + Gamma(1, δ), since expo-
nentials are a particular case of Gamma random vari-
ables with shape parameter 1. The reproduction time
Tr of mother and Tm + Tr of daughter cells are also uni-
modal with a delay, and very similar in shape to T in
our model. This can be seen in Fig. 10(a), where we
plot the probability densities renormalized to mean 1.
Analogous to (6), we can compute the variation coeffi-
cients of Tr and (Tm + Tr), which turn out to be 0.356
and 0.244, respectively. To confirm that the behaviour
of sector boundaries can be well predicted by the varia-
tion coefficient, we present data of three simulations in
Fig. 10(b): one with reproduction times Tr for mother
and Td + Tr for daughter cells as explained above, one
with Tr for all cells, and one with Tr + Tm for all cells.
The mean squared displacement M(h) for these models
also shows a power law with exponent 4/3 analogous to
Fig. 7, and the prefactors σδ match well with our simpli-
fied model.

To estimate the variation coefficient in the model with
mother and daughter cells, we measure the fraction of
reproduction events of daughter cells to be pd = 0.88,
and pm = 0.12 for mother cells. The reproduction time
of the union of mother and daughter cells is then taken
as

T = Θ(Tm + Tr) + (1−Θ)Tr , (29)

where the independent Bernoulli variable Θ ∼ Be(pd) ∈
{0, 1} indicates reproduction of a daughter. The varia-
tion coefficient of T turns out to be 0.322. In all three
combinations of realistic reproduction times we find that
the generic family of Fδ introduced in (4) provides a good
approximation for the properties of domain boundaries in
simulations. We expect this to hold for a large class of
microbial species which have similar reproduction times
with unimodal structure and do not exhibit significant
spatial correlations due to shape.
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V. CONCLUSION

We have introduced a generic generalization of the
Eden growth model with competing species, regarding
the reproduction time statistics of the individuals. This
is highly relevant in biological growth phenomena, and
can have significant influence on the sectoring patterns
observed e.g. in microbial colonies. Although microbial
species growth is the prime example, our results also ap-
ply to more general phenomena of space limited growth
with inheritance, where the entities have a complex inter-
nal structure that leads to non-exponential reproduction
times, such as colonization/range expansions or epidemic
spreading of different virus strands. Our main result is
that, as long as the reproduction time statistics have fi-
nite variation coefficients, the induced correlations are lo-
cal and the macroscopic behaviour of the system is well
described by the KPZ universality class. The dependence
of the relevant parameters in that macroscopic descrip-
tion on the variation coefficient (a microscopic property
of the system) is well understood by simple heuristic ar-
guments, which we support with detailed numerical evi-
dence.
The results in this paper can be used for quantitative

predictions of sectoring patterns for species of approx-
imately isotropic shape, such as S. cerevisiae. It is an
interesting question if the simple mechanism of time cor-
relations due to reproduction time statistics with variable
variation coefficients is enough to quantitatively explain
sectoring patterns in real experiments, which is currently
under investigation. It could well be that other fac-
tors influencing e.g. the choice of growth direction have
to be included, to account for an effective attraction of
cells which is often observed in the growth of microbial
colonies. Such an effect would further smoothen the sur-
face and the fluctuations of sector boundaries. In this
paper we have focused on purely temporal correlations,
but it should also be possible to describe spatial effects
due non-isotropic particle shapes with the same methods.
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Appendix A: Effect of geometric disorder

The squared variation coefficient ǫ2 in (19) due to ge-
ometric disorder has been consistently fitted to values
around 0.4 with our data in Section III. This value
is compatible with the following very simple argument.
Consider a single growth event around an isolated spher-
ical particle with diameter 1, with direction α chosen
uniformly in a cone with opening angle π/2 around the

vertical axis. This leads to 〈∆yi〉 =
∫ π/2

−π/2 cosα
dα
π ≈ 0.64

and

ǫ2 ≈
(

∫ π/2

−π/2

cos2 α
dα

π
−〈∆yi〉2

)/

〈∆yi〉2 ≈ 0.23 , (A1)

which is of the same order as the fitted values. Choosing
only a slightly larger opening angle 0.55π of the cone
leads to ǫ2 ≈ 0.39 and 〈∆yi〉 ≈ 0.57. These are in good
agreement with the fitted values and with measurements
of 〈∆yi〉 (not shown). The latter show some dependence
on δ, related also to the compactness of growth as seen
in Figs. 2 and 3, but this does not contribute to our
results on a significant level so we ignore this dependence.
Actual growth events in the simulation are of course often
obstructed by neighbouring particles, but the right order
of magnitude of the parameters can be explained by the
basic argument above.

Appendix B: Deriving the correlation function C(l, t)

We use the mode coupling method [29], in order to find
an exact analytical expression of the correlation function
Eq. (14) as shown in Eq. (15). The idea of the mode
coupling approximation is that properties of solutions of
the KPZ equation (8) may be derived by first considering
the linear Edwards-Wilkinson equation [41] for λ = 0.
We further consider the co-moving frame, so that v0 = 0,
and the equation then reads

∂ty(x, t) = ν∆y(x, t) +
√
Dη(x, t). (B1)

We denote by

ŷ(k, t) =

∫ ∞

−∞
dx y(x, t)e−ikx

the Fourier transform of the function y(x, t). The evolu-
tion of the function ŷ(k, t) satisfies

∂tŷ(k, t) = −νk2ŷ(k, t) +
√
D η̂(k, t). (B2)

Here η̂(k, t) is the spatial Fourier transform of the white
noise η(x, t), where η̂(k, t) has a mean 0 with correlations

〈

η̂(k, t)η̂(k′, t′)
〉

=
1

2π
δ(k + k′)δ(t− t′). (B3)

A formal solution of (B2) can be obtained, and after in-
verse Fourier transform this leads to

y(x, t) =
√
D

∫ ∞

−∞
dk eikx

∫ t

0

ds η̂(k, s)e−νk2(t−s) . (B4)

The correlation function C(l, t) defined in (14) can be
represented as

C(l, t)2 = 2

∫ L

0

dx
〈

y(x, t)2−y(l+x, t)y(x, t)
〉

. (B5)
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Using the solution (B4) we can compute

∫ L

0

dx
〈

y(l+x, t)y(x, t)
〉

=
D

2νπ

∫ ∞

0

dk
cos(kl)

k2
[1−e−2νk2t] ,

(B6)
where we have used that the Fourier transform is even
in k. Taken together, this leads to an expression for
the correlation function (14) of the Edwards-Wilkinson
equation

C(l, t)2 =
D

νπ

∫ ∞

0

dk k−2
(

1− cos(kl)
)

[1−e−2νk2t] . (B7)

In order to compute the correlation function for the
KPZ equation (8) we substitute length scale dependent
parameters D(k) and ν(k) into (B7), which are obtained
from the renormalization group flow equations [3, 18, 29].
In d = 2 dimensions these are given by

ν(k) = ν1[(1 − αB) + αB/k]
1/2 ,

D(k) = D1[(1− αB) + αB/k]
1/2 , (B8)

and λ(k) = λ1, where

αB =
λ2
1D1

4π2ν31
.

Here (λ1, ν1, D1) are the parameters for k = 1 where no
renormalization has taken place. Plugging this into (B7)
and only considering the most dominant terms, we obtain

C(l, t)2 =
D1

ν1π

∫ ∞

0

dk k−2
(

1− cos(kl)
)

[1−e−Bk3/2t] ,

(B9)

where B = 2ν1α
1/2
B =

√
2

π λ
√

D1/2ν1 .
If we take t → ∞ in Eq. (B9) we get

C(l, t)2 → D1

ν1π

∫ ∞

0

dk k−2
(

1− cos(kl)
)

=
D1

2ν1
l .(B10)

With (B8) D/ν = D1/ν1 is independent of the scale k,
and thus

C(l, t) ≈
(D

2ν
l
)1/2

for l ≪ ξ‖(t) . (B11)

For finite time, numerical integration of (B9) in the large
l limit gives

lim
l→∞

C(l, t)2 ≈ 2.7
D

νπ
(Bt)2/3.

Together with (B11) and the definition (14) of the corre-
lation length this leads to

lim
l→∞

C(l, t) ≈
(

5.4× 21/3
(D

2ν

)4/3

π−5/3(λt)2/3
)1/2

,

(B12)
and

ξ‖(t) ≈ 5.4× 21/3
(D

2ν

)1/3

π−5/3(λt)2/3 . (B13)
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