Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Local compositional environment of Er in ZnS : ErF3 thin film electroluminescent phosphors

Tools
- Tools
+ Tools

Davidson, Mark R., Stoupin, Stanislav, DeVito, David, Collingwood, Joanna F., Segre, Carlo and Holloway, Paul H. (2011) Local compositional environment of Er in ZnS : ErF3 thin film electroluminescent phosphors. Journal of Applied Physics, Volume 109 (Number 5). 054505. doi:10.1063/1.3549726 ISSN 0021-8979.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1063/1.3549726

Request Changes to record.

Abstract

ZnS:Er thin film electroluminescent phosphors have been shown to exhibit a marked maximum in the near infrared emission (NIR) after a 425 degrees C post-deposition anneal with a very narrow temperature window of +/- 25 degrees C for optimal NIR emission. Extended X-ray absorption fine structure (EXAFS) spectroscopy has been obtained from both the Zn and Er edges in order to examine the local structure of the host and dopant in this NIR phosphor material. Interestingly, the addition of only similar to 0.5 mol. % of Er as ErF(3) into the host is found to reduce the Zn-S bond length of one of the two nearest Zn-S shells by 0.6 angstrom relative to high-quality, atomic layer epitaxy (ALE) grown, pure ZnS. The coordination number of this shorter Zn-S bond increases after the optimal 425 degrees C anneal. Longer range fits indicate a highly disordered structure, overall, consistent with earlier TEM results. Erbium-L(3) EXAFS data from the second and third shells show increasing crystallinity with increasing annealing temperature in the vicinity of the Er dopant. Data from the first shell cannot be fit with S atoms, but are fit equally well with either O or F. Comparison with earlier analyses indicates that the Er is most likely surrounded by F in the first shell. Based on these data and previous studies, we develop a model in which the Er dopant is present as an Er:F(x) complex with associated S vacancies, which may include one sulfur atom remaining in the Er nearest shell. Upon annealing, there is a reduction in the F present and a rearrangement of the crystal structure in the vicinity of the Er atom. Optimum annealing conditions occur when optimal crystalline environment is achieved prior to the loss of too much F from the Er:Fx complex. (C) 2011 American Institute of Physics. [doi:10.1063/1.3549726]

Item Type: Journal Article
Subjects: Q Science > QC Physics
T Technology > TK Electrical engineering. Electronics Nuclear engineering
Divisions: Faculty of Science, Engineering and Medicine > Engineering > Engineering
Library of Congress Subject Headings (LCSH): Thin films -- Electric properties, Zinc sulfide, Absorption spectra, Electroluminescence, Phosphors
Journal or Publication Title: Journal of Applied Physics
Publisher: American Institute of Physics
ISSN: 0021-8979
Official Date: 1 March 2011
Dates:
DateEvent
1 March 2011Published
Volume: Volume 109
Number: Number 5
Page Range: 054505
DOI: 10.1063/1.3549726
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: United States. Army Research Office (ARO), U.S. Army Research Laboratory (ARL), United States. Department of Energy
Grant number: DAAD19-00-1-0002 (ARO), W911NF-04-2000023 (ARL)

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us