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Abstract    26 

Integron abundance and diversity were studied in soil amended with pig slurry. Real-27 

time PCR illustrated a significant increase in class 1 integron prevalence post slurry-28 

application with increased prevalence still evident at 10 months post-application. 29 

Culture dependent data revealed 10 genera, including putative human pathogens, 30 

carrying class 1 and 2 integrons.  31 

 32 

Integrons are genetic elements that integrate or excise mobile cassette genes including 33 

those that confer resistance to a wide range of antibiotics (8). Class 1 and 2 integrons 34 

are associated with carriage of antibiotic resistance genes in clinically important 35 

bacteria and there is increasing evidence of environmental reservoirs of bacteria 36 

carrying these integron classes (9, 10, 18, 19). There is concern that the use of 37 

veterinary antibiotics selects for antibiotic resistant bacteria which, along with 38 

antibiotic residues, enter the wider environment via slurry application. The impact of 39 

slurry application on environmental reservoirs of antibiotic resistant bacteria is an 40 

important question. This study aimed to investigate the molecular prevalence of class 41 

1 integrons and the diversity of class 1 and 2 integrons in bacteria isolated from pig 42 

slurry and from amended clay soils. The study site had a history of long-term 43 

application of slurry from tylosin (TY) fed pigs combined with experimental 44 

application of slurry containing sulfachloropyridazine (SCP) and oxytetracycline 45 

(OTC). Slurry from tylosin fed pigs (100g / ton of feed) was applied to soil annually 46 

before the start of the experiment; subsequently two annual experimental applications 47 

were also undertaken containing 18.85 mg /L and 2.58 mg /L or SCP and OTC 48 

respectively. The slurry was applied to the field at the same rate as normal agricultural 49 

practice (45,000 L / ha). Antibiotics were added to model sorption properties in soil 50 

and represented real-world concentrations found in pig slurry (4, 5). Slurry was stored 51 



 3 

for up to 3 months in a holding tank, containing a mixture of new and older slurry. 52 

Soil samples were taken at time points over the two year experimental period (6).  53 

 Over 500 isolates from time points pre- and post-slurry application were 54 

screened by PCR for intI1 and intI2 (6), 14.7 % (n=78) were positive for intI1 and / or 55 

intI2, 5.0 % (n=27) carried intI1 only compared to 8.5 % (n=45) for intI2 only, with 56 

1.1 % (n=6) of isolates positive for both intI1 and intI2.  Integron prevalence in 57 

isolates was dependent on selective media used, with numbers of isolates carrying 58 

intI1 being significantly higher under TY selection (9.9 %) compared to OTC (4.8 %), 59 

SCP (3.8 %) or no selection (NS) (3.6 %) and intI2 under OTC selection (24.8 %) 60 

compared to TY (5.8 %), SCP (5.6 %) or NS (0.0 %) (chi-square test for comparisons 61 

of two proportions). This data suggests that TY and OTC may select or co-select for 62 

class 1 and 2 integrons respectively, with TY selection most likely to occur in the pig 63 

gut or in the slurry holding tank as it was undetectable in soil cores. Conversely OTC 64 

selection may have occurred in the slurry tank or the soil where it persists (12). There 65 

was no clear trend in integron prevalence in isolates at sample points after antibiotic 66 

amended slurry application in either year of the study (data not shown). Molecular 67 

prevalence of intI1 was determined in soils in year 1 using SYBR Green real-time 68 

PCR on triplicate DNA extractions at each time point (UltraClean Soil DNA Kit). 69 

PCRs were performed on an Applied Biosystems 7500 Fast System, containing; 20 µl 70 

2X Power SYBR Green PCR Master Mix (Applied Biosystems), 4 µl primer pairs, 0.4 71 

µl Bovine Serum Albumin (10 mg ml
-1

), 4 µl 1:10 diluted template DNA and 11.6 µl 72 

DNA free H2O. Final concentration of primer pairs were: 0.9 µM for 16S (16), int1f2 73 

(TCGTGCGTCGCCATACA) and int1r2 (GCTTGTTCTACGGCCGTTTGA). 74 

Standard curves for absolute quantification were produced from seeded soil 75 

inoculated with serial dilutions of E. coli SK4903 (IncPβ R751 carrying intI1, qacE) 76 

(17). Molecular prevalence was calculated by dividing target gene abundance by 16S 77 
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rRNA abundance and multiplying by 100. Corrections were made for 16S rRNA and 78 

IncPβ R751 copy number (1, 21). Melting curves were checked for specificity of PCR 79 

amplification and template dilution experiments were carried out to check for PCR 80 

inhibition. 81 

  Molecular prevalence of intI1 was significantly lower in pre-application 82 

samples than at day 1, 21, 90 and 289 post-application using a chi-square test for 83 

comparisons of two proportions (p < 0.0001) (Figure 1). 0.21% of bacteria carried 84 

intI1 in pig slurry spread onto the trial plots (unpublished data). In pre-application 85 

soils intI1 prevalence was 0.0002% which was similar to other unpolluted soils tested 86 

(unpublished data), this increased dramatically to 0.01% immediately after 87 

application, then decreased slightly to 0.008% at day 21 and then to approximately 88 

0.003 and 0.004% at days 90 and 289 respectively. IntI1 prevalence at later time 89 

points were still significantly higher than in pre-application soils indicating that the 90 

impact of slurry application on class 1 integron prevalence was still evident after 91 

nearly 10 months. This concurs with evidence of sul1 abundance in manured soils 92 

measured using real-time PCR, where a manure effect on abundance was still evident 93 

at 61 days post application (11). The discrepancy between pre-application soil (which 94 

had a history of tylosin fed pig slurry addition) and post-application soil (slurry also 95 

containing SCP and OTC) may be due to additional selective pressure exerted by SCP 96 

and OTC. In the present study Enterobacteriaceae spp. carrying intI1 was present in 97 

soil leachate samples 164 days after slurry application, again suggesting that integron 98 

positive bacteria, likely to have come from slurry, survived in soil for a considerable 99 

length of time.  100 

16S rRNA PCR and sequencing (6) revealed the intI positive isolates belonged 101 

to 10 genera / families (Table 1). The largest number of integrase positive isolates 102 

were Pseudomonas spp. which were the only integron positive genera present 103 
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throughout the year, including in pre-application samples. Gram positive Bacillus spp. 104 

and Arthrobacter spp. were also identified, carrying both intI1 and intI2 in pig slurry, 105 

soil leachate day 164 and at day 289 post application. Arthrobacter and pseudomonas 106 

spp. have previously been isolated from pigsties (2). Aerococcus viridians was only 107 

isolated from pig slurry, this species is a pathogen of pigs and humans (15). 108 

Psychrobacter spp. were isolated from pig slurry, pre-application soil, and day 1 post-109 

application, members of this genus are also opportunistic pathogen of animals and 110 

humans. Acinetobacter spp., including A. lwoffi were repeatedly characterised 111 

carrying combinations of the two integrase genes in pig slurry and amended soil at 112 

day 1 and 21 but were not isolated at later time points or from pre-application cores; 113 

this species is an opportunistic human pathogen that is also found as a commensal in 114 

healthy individuals (13).  Enterobacteriaceae spp. were isolated at year 1 day 1 and in 115 

soil leachate at day 164 (year 1) and Enterococcus spp. in soil leachate at day 164 116 

only. The majority of integron bearing genera were isolated post-application, 117 

suggesting that they were introduced via slurry application, were already present in 118 

the soil and were selected for by antibiotics contained in applied slurry or resulted 119 

from HGT between introduced and indigenous bacteria after slurry application. This 120 

correlates with the 50 fold increase in intI1 observed immediately after slurry 121 

application. It is clear that some integron positive genera, including Acinetobacter 122 

spp. were only isolated up to day 21 which correlated with a decrease in molecular 123 

prevalence of intI1 after this time point. 124 

Only six intI1 positive isolates contained amplifiable variable regions (18), 125 

containing aadA1 (streptomycin / spectinomycin resistance) (GenBank accession: 126 

FJ457611), including Acinetobacter, Aerococcus, Pseudomonas, Enterobacteriaceae 127 

spp and Arthrobacter arilaitensis which carried an intI11 gene and a 3’-CS 128 

including qacE1 and sulI (Fig.2a) (7). The latter class 1 integron variable region had 129 
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99% similarity at the nucleotide level to a class 1 integron located on the pTet3 130 

plasmid from Corynebacterium glutamicum (20). aadA genes were isolated from pig 131 

manure in a previous study demonstrating strong selective pressure for streptomycin/ 132 

spectinomycin resistance in pig farming (3). In conjugal transfer experiments, 133 

conducted as described by Byrne-Bailey et al., (6), the intI1 and sul1 genes from 134 

Arthrobacter arilaitensis transferred into E. coli K-12 CV601 at a frequency of 3.71 x 135 

10
-3 

(transconjugants per number of donor cells), and P. putida UWC1 at a frequency 136 

of 2.98 x 10
-3

 (transconjugants per number of donor cells) indicating the ability of the 137 

mobile genetic element bearing the integron to transfer from a Gram positive host into 138 

Gram negative recipients.  139 

 Variable regions between intI2 and orfX were amplified in intI2 positive 140 

isolates using primers described by White et al. (22) and four class 2 integron types 141 

were characterised, 10 failed to amplify, eight gave a 550 bp sequence encoding an 142 

intI2 gene. The third type, which gave a 1560 bp product, found in six isolates was 143 

Tn7 derived encoding intI2, a sat1 gene cassette for streptothricin resistance, an 144 

aadA1 gene cassette and orfX (Fig. 2b) (GenBank accession: FJ469574). The largest 145 

of the four class 2 integron types was found in 28 isolates, representing indigenous 146 

and introduced bacteria, including Acinetobacter, Enterococcus, Pseudomonas, 147 

Psychrobacter Enterobacteriaceae, Stenotrophomonas, Streptomyces spp. and 148 

uncultured bacterium EBSCPSA-6117, giving a 2300 bp sequence encoding a 149 

trimethoprim resistance gene (dfrA1), streptothricin resistance (sat1), streptomycin 150 

resistance (aadA1) and orfX (Fig 2c, GenBank accession: FJ492781), an arrangement 151 

previously described from E. coli isolated from pig faeces (14).   152 

 Isolates were tested for resistance against eight antibiotics (6). Isolates bearing 153 

class 1 integrons demonstrated resistance to more antibiotics than those carrying class 154 

2 integrons (4.4 as opposed to 3.3 respectively, P = 0.037 ANOVA). One of the 155 
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isolates resistant to all eight antibiotics, C506, identified as Enterobacteriaceae spp. 156 

was isolated from soil leachate 164 days post slurry application; demonstrating 157 

transport of antibiotic resistant bacteria of agricultural origin to water catchments.  158 

 This study demonstrates that pig slurry amended soil represents a reservoir of 159 

diverse bacterial species carrying class 1 and 2 integrons, with indigenous and 160 

introduced bacteria carrying the same integron types. Real-time PCR demonstrated a 161 

significant increase in class 1 integrase prevalence after slurry application, a 162 

significant effect was still observable at day 289 post-application. The risk of 163 

resistance gene transfer from the agricultural environment to the clinic is a matter of 164 

controversy. However, it is an accepted fact that farm animals and manure are a 165 

source of food and water borne human pathogens. It is clear that the same transfer 166 

routes will bring the human population into contact with commensal and pathogenic 167 

bacteria carrying antibiotic resistance genes that may be further disseminated within 168 

the human bacterial flora. 169 
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FIGURE/TABLE LEGENDS: 254 

Table 1: Summary of intI prevalence and sample identification for each species 255 

isolated. PS, pig slurry; P, pre application; SL, soil leachate; number denotes days 256 

after slurry application. 257 

 258 

Figure 1. Molecular prevalence of intI1 in soil amended with pig slurry. Error bars 259 

represent standard error of three replicate samples (4 in pre-application), prevalences 260 

are statistically different from one another at all time points (Chi-square, p < 0.0001). 261 

 262 

Figure 2: (a) Schematic of the class 1 integron fragment sequenced from 263 

Arthrobacter arilaitensis (isolate C361). (b) Diagrammatic representation of class 2 264 

integron PCR fragments, approximately 1500 bp in length, sequenced from a number 265 

of intI2 positive isolates.  (c) Class 2 structure as Fig. 2b, approximately 2500 bp in 266 

length but this integron structure had the additional insertion of a dfrA1 gene cassette.   267 

 268 

 269 
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Table 1.  270 
Genus as identified 

by 16S rRNA 

sequencing 

Numbers 

(percentage) 

of intI positive 

isolates 

intI genotype, number isolates 

and day isolated after slurry 

application 

Acinetobacter 21 (26.9)) intI1             (3)           (1, 21) 
intI2            (16)          (PS, 21) 

Aerococcus 2 (2.6) intI1             (1)           (PS) 

intI2             (1)           (PS) 

Arthrobacter 2 (2.6) intI1             (2)           (289) 

Bacillus 7 (9.0) intI1             (2)           (SL 164, 289) 
intI2             (5)           (PS, SL 164) 

intI1+intI2   (1)           (PS, SL 164) 

Enterococcus 1 (1.3) intI1+intI2   (1)           (SL 164) 

Pseudomonas 34 (43.6) intI1             (19)         (P, 1, 21, 90) 

intI2             (14)         (P, 1, 21, 90, 240) 
intI1+intI2   (2)           (21) 

Psychrobacter 6 (7.7) intI2              (5)          (PS, P, 1) 

intI1+intI2    (1)          (PS) 

Enterobacteriaceae  2 (2.6) intI2              (1)          (1) 
intI1+intI2    (1)          (SL 164) 

Stenotrophomonas 1 (1.3) intI2              (1)          (21) 

Streptomyces 1 (1.3) intI2              (1)           (1) 

Unknown 1 (1.3) intI2              (1)           (21) 

 271 
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Figure 1. 304 
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Figure 2.  321 
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