The Library
A Markov partition that reflects the geometry of a hyperbolic toral automorphism
Tools
Manning, Anthony. (2002) A Markov partition that reflects the geometry of a hyperbolic toral automorphism. American Mathematical Society. Transactions, Vol.354 (No.7). pp. 28492863. ISSN 00029947
PDF
WRAP_ManningMarkov_partition.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (260Kb) 

PDF
WRAP_manning_coversheet.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (37Kb) 
Official URL: http://dx.doi.org/10.1090/S0002994702030039
Abstract
We show how to construct a Markov partition that reflects the geometrical action of a hyperbolic automorphism of the ntorus. The transition matrix is the transpose of the matrix induced by the automorphism in udimensional homology, provided this is nonnegative. (Here u denotes the expanding dimension.) That condition is satisfied, at least for some power of the original automorphism, under a certain nondegeneracy condition on the Galois group of the characteristic polynomial. The (nu) rectangles are constructed by an iterated function system, and they resemble the product of the projection of a udimensional face of the unit cube onto the unstable subspace and the projection of minus the orthogonal (n  u)dimensional face onto the stable subspace.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Markov processes, Automorphisms, Torus (Geometry) 
Journal or Publication Title:  American Mathematical Society. Transactions 
Publisher:  American Mathematical Society 
ISSN:  00029947 
Date:  2002 
Volume:  Vol.354 
Number:  No.7 
Page Range:  pp. 28492863 
Identification Number:  10.1090/S0002994702030039 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
References:  [1] R Adler and B Weiss, Similarity of automorphisms of the torus, Memoirs Amer. Math. Soc., 98 (1970). MR 41:1966 [2] T Bedford, Generating special Markov partitions for hyperbolic toral automorphisms using fractals, Ergodic Theory Dynam. Systems 6 (1986), 325{333. MR 88c:58037 [3] R Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470, Springer, New York 1975. MR 56:1364 [4] R Bowen, On axiom A diffeomorphisms, CBMS Regional Conference Series in Mathematics 35, Amer. Math. Soc. 1978. MR 58:2888 [5] R Bowen, Markov partitions are not smooth, Proc. Amer. Math. Soc. 71 (1978), 130{132. MR 57:14055 [6] R Devaney, An introduction to chaotic dynamical systems, Benjamin, Reading, MA, 1986. MR 87e:58142 [7] K Falconer, Fractal geometry: mathematical foundations and applications, Wiley, Chichester 1990. MR 92j:28008 [8] J Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics 49, Amer. Math. Soc. 1982. MR 84f:58067 [9] D. Garling. A course in Galois theory, Cambridge University Press, Cambridge 1986. MR 88d:12007 [10] P Hilton and S Wylie, Homology Theory: An introduction to algebraic topology, Cambridge University Press, Cambridge 1960. MR 22:5963 [11] MWHirsch, Expanding maps and transformation groups, Proc. Symp. Pure Math. 14 (1970), 125{131. MR 45:7750 [12] J E Hutchinson, Fractals and selfsimilarity, Indiana Univ. Math. J. 30 (1981), 713{747. MR 82h:49026 [13] S Ito and M Ohtsuki, Modified JacobiPerron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441{472. MR 95g:58167 [14] A Katok and B Hasselblatt, Introduction to the modern theory of dynamical systems, Cambridge University Press, Cambridge 1995. MR 96c:58055 [15] R Kenyon, Selfsimilar tilings, Thesis, Princeton, 1990. [16] R Kenyon, Selfreplicating tilings, Contemp. Math. 135 (1992), 239{263. MR 94a:52043 [17] R Kenyon and A Vershik, Arithmetic construction of sofic partitions of hyperbolic toral automorphisms, Ergodic Theory Dynam. Systems 18 (1998), 357{372. MR 99g:58092 [18] J C Lagarias and Y Wang, Selfaffine tiles in Rn, Adv. Math. 121 (1996), 21{49. MR 97d:52034 [19] S Le Borgne, Un codage sofique des automorphismes hyperboliques du tore, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 1123{1128. MR 97k:58095 [20] R Mañé, Ergodic theory and differentiable dynamics, Springer, Berlin 1987. MR 88c:58040 [21] A Manning, Axiom A diffeomorphisms have rational zeta functions, Bull. London Math. Soc. 3 (1971), 215{220. MR 44:5982 [22] A Manning, There are no new Anosov diffeomorphisms on tori, Amer. J. Math., 96 (1974), 422{429. MR 50:11324 [23] A Manning, Irrationality of linear combinations of eigenvectors, Proc. Indian Acad. Sci. Math. Sci., 105 (1995), 269{271. MR 96h:15009 [24] W Massey, A Basic Course in Algebraic Topology, Springer, New York 1991. MR 92c:55001 [25] R D Mauldin and S C Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc., 309 (1988), 811{829. MR 89i:28003 [26] B Praggastis, Numeration systems and Markov partitions from selfsimilar tilings, Trans. Amer. Math. Soc. 351 (1999), 3315{3349. MR 99m:11009 [27] D Ruelle, Onedimensional Gibbs states and axiom A diffeomorphisms, J. Differential Geom. 25 (1987), 117{137. MR 88j:58099 [28] E Seneta, Nonnegative matrices and Markov chains, 2nd ed., Springer, New York 1981. MR 85i:60058 [29] Ya G Sinai, Markov partitions and Udiffeomorphisms, Func. Anal. Appl. 2 (1968), 61{82. MR 38:1361 [30] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747{817. MR 37:3598 [31] P. Walters, An introduction to ergodic theory, Springer, New YorkBerlin 1982. MR 84e:28017 [32] R F Williams, Classification of subshifts of finite type, Ann. of Math. 98 (1973), 120{153. Errata, ibid. 99 (1974), 380{381. MR 48:9769 
URI:  http://wrap.warwick.ac.uk/id/eprint/4295 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 