The Library
Subregular representations of Sln and simple singularities of type An1. Part II
Tools
Gordon, I. (Iain) and Rumynin, Dmitriy. (2004) Subregular representations of Sln and simple singularities of type An1. Part II. Representation Theory, Vol.8 . pp. 328345. ISSN 10884165
PDF
WRAP_gordon_coversheet.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (39Kb) 

PDF
WRAP_gordon_subregular.pdf  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (289Kb) 
Official URL: http://dx.doi.org/10.1090/S1088416504001864
Abstract
The aim of this paper is to show that the structures on Ktheory used to formulate Lusztig's conjecture for subregular nilpotent slnrepresentations are, in fact, natural in the McKay correspondence. The main result is a categorification of these structures. The nocycle algebra plays the special role of a bridge between complex geometry and representation theory in positive characteristic.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Geometry, Algebraic, Grothendieck groups, Kleinian groups 
Journal or Publication Title:  Representation Theory 
Publisher:  American Mathematical Society 
ISSN:  10884165 
Date:  2004 
Volume:  Vol.8 
Page Range:  pp. 328345 
Identification Number:  10.1090/S1088416504001864 
Status:  Peer Reviewed 
Access rights to Published version:  Open Access 
Funder:  Mathematical Sciences Research Institute (Berkeley, Calif.) (MSRI), European Commission (EC), Nuffield Foundation (NF), Engineering and Physical Sciences Research Council (EPSRC) 
Grant number:  ERB FMRXCT970100 (EC), NAL/00625/G (Nuffield) 
References:  [1] J. Bernstein, I. Frenkel and M. Khovanov, A categorification of the TemperleyLieb algebra and Schur quotients of U(sl2) via projective and Zuckerman functors, Selecta Math. (N.S.) 5 no.2 (1999), 199{241. MR 1714141 (2000i:17009) [2] R. Bezrukavnikov, I. Mirkovic, D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, preprint, math.RT/0205144. [3] T. Bridgeland, A. King and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535{554. MR 1824990 (2002f:14023) [4] N. Chriss and V. Ginzburg, Representation Theory and Complex Geometry, Birkhauser, Berlin, 1997. MR 1433132 (98i:22021) [5] P. Deligne, Action du groupe des tresses sur une catégorie, Invent. Math. 128 (1997), 159{ 175. MR 1437497 (98b:20061) [6] I. Gordon and D.Rumynin, Subregular representations of sln and simple singularities of type An1, Compositio Math. 138, (2003), 337{360. MR 2019445 [7] R. Gordon and E.L. Green, Graded Artin algebras, J. Algebra 76, (1982) 111{137. MR 0659212 (83m:16028a) [8] Y. Ito and H. Nakajima, McKay correspondence and Hilbert schemes in dimension three, Topology 39 no. 6 (2000), 1155{1191. MR 1783852 (2001h:14004) [9] J.C. Jantzen, Subregular nilpotent representations of Lie algebras in prime characteristic, Represent. Theory 3 (1999), 153{222. MR 1783852 (2001h:14004) [10] M. Kapranov and E. Vasserot, Kleinian singularities, derived categories and Hall algebras. Math. Ann. 316 (2000) 565{576. MR 1752785 (2001h:14012) [11] G. Lusztig, Ane Hecke algebras and their graded version, J. Amer. Math. Soc. 2 (1989), 599{635. MR 0991016 (90e:16049) [12] G. Lusztig, Bases in equivariant Ktheory, Represent. Theory 2 (1998), 298{369. MR 1637973 (99i:19005) [13] G. Lusztig, Bases in equivariant Ktheory, II, Represent. Theory 3 (1999), 281{353. MR 1714628 (2000h:20085) [14] G. Lusztig, Subregular nilpotent elements and bases in Ktheory, Canad. J. Math. 51 (1999), 1194{1225. MR 1756878 (2001g:19006) [15] G. Lusztig, Notes on ane Hecke algebras, in IwahoriHecke algebras and their representation theory (MartinaFranca, 1999), 71{103, Lecture Notes in Math. 1804, Springer, 2002. MR 1979925 (2004d:20006) [16] H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, Univ. Lecture Ser. 18, AMS, 1999. MR 1711344 (2001b:14007) [17] A. Premet, Special transverse slices and enveloping algebras, Adv. Math., 170 (2002), 155. MR 1929302 (2003k:17014) [18] J. Rickard, Translation functors and equivalences of derived categories for blocks of algebraic groups, NATO Sci. Ser. C Math. Phys. Sci. 424, Finitedimensional algebras and related topics (Ottawa, ON, 1992), 255{264, Kluwer, 1994. MR 1308990 (95k:20068) [19] P. Seidel and R. Thomas, Braid group actions on derived categories of coherent sheaves, Duke Math. J. 108 (2001), 37{108. MR 1831820 (2002e:14030) [20] P. Slodowy, Simple Singularities and Simple Algebraic Groups, Lecture Notes Math. 815, Springer, 1980. MR 0584445 (82g:14037) [21] A. Yekutieli, Dualizing Complexes over noncommutative graded algebras, J. Algebra 153 (1992), 41{84. MR 1195406 (94a:16077) 
URI:  http://wrap.warwick.ac.uk/id/eprint/4298 
Actions (login required)
View Item 