
The Library
Computing genus-2 Hilbert–Siegel modular forms over via the Jacquet–Langlands correspondence
Tools
Cunningham, Clifton and Dembélé, Lassina (2009) Computing genus-2 Hilbert–Siegel modular forms over via the Jacquet–Langlands correspondence. Experimental Mathematics, Vol.18 (No.3). pp. 337-345. doi:10.1080/10586458.2009.10129048
Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1080/10586458.2009.10129048
Abstract
In this paper we present an algorithm for computing Hecke eigensystems of Hilbert–Siegel cusp forms over real quadratic fields of narrow class number one. We give some illustrative examples using the quadratic field . In those examples, we identify Hilbert–Siegel eigenforms that are possible lifts from Hilbert eigenforms.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science > Mathematics | ||||
Journal or Publication Title: | Experimental Mathematics | ||||
Publisher: | A K Peters, Ltd. | ||||
ISSN: | 1058-6458 | ||||
Official Date: | 2009 | ||||
Dates: |
|
||||
Volume: | Vol.18 | ||||
Number: | No.3 | ||||
Page Range: | pp. 337-345 | ||||
DOI: | 10.1080/10586458.2009.10129048 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |