References: |
[1] Albert, A. and J. Anderson (1984). On the existence of maximum likelihood estimates in logistic regression models. Biometrika 71(1), 1–10. MR0738319 [2] Breslow, N. E. and X. Lin (1995). Bias correction in generalised linear mixed models with a single component of dispersion. Biometrika 82, 81–91. MR1332840 [3] Bull, S. B., C. Mak, and C. Greenwood (2002). A modified score function estimator for multinomial logistic regression in small samples. Com- putational Statistics and Data Analysis 39, 57–74. MR1895558 [4] Cook, R. D., C.-L. Tsai, and B. C. Wei (1986). Bias in nonlinear regression. Biometrika 73, 615–623. MR0897853 [5] Cordeiro, G. and M. Toyama Udo (2008). Bias correction in generalized nonlinear models with dispersion covariates. Communications in Statistics: Theory and Methods 37(14), 2219–225. MR2526676 [6] Cordeiro, G. M. and P. McCullagh (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society, Series B: Methodological 53(3), 629–643. MR1125720 [7] Cordeiro, G. M. and K. L. P. Vasconcellos (1997). Bias correction for a class of multivariate nonlinear regression models. Statistics & Probability Letters 35, 155–164. MR1483269 [8] Cox, D. R. and D. V. Hinkley (1974). Theoretical Statistics. London: Chapman & Hall Ltd. MR0370837 [9] Cox, D. R. and E. J. Snell (1968). A general definition of residuals (with discussion). Journal of the Royal Statistical Society, Series B: Methodolog- ical 30, 248–275. MR0237052 [10] Cribari-Neto, F. and A. Zeileis (2010). Beta regression in R. Journal of Statistical Software 34 (2), 1–24. [11] Efron, B. (1975). Defining the curvature of a statistical problem (with applications to second order efficiency) (with discussion). The Annals of Statistics 3, 1189–1217. MR0428531 [12] Ferrari, S. and F. Cribari-Neto (2004). Beta regression for modelling rates and proportions. Journal of Applied Statistics 31(7), 799–815. MR2095753 [13] Firth, D. (1992). Bias reduction, the Jeffreys prior and GLIM. In L. Fahrmeir, B. Francis, R. Gilchrist, and G. Tutz (Eds.), Advances in GLIM and Statistical Modelling: Proceedings of the GLIM 92 Conference, Munich, New York, pp. 91–100. Springer. [14] Firth, D. (1993). Bias reduction of maximum likelihood estimates. Biometrika 80(1), 27–38. MR1225212 [15] Gart, J. J., H. M. Pettigrew, and D. G. Thomas (1985). The effect of bias, variance estimation, skewness and kurtosis of the empirical logit on weighted least squares analyses. Biometrika 72, 179–190. [16] Heinze, G. and M. Schemper (2002). A solution to the problem of separation in logistic regression. Statistics in Medicine 21, 2409–2419. [17] Heinze, G. and M. Schemper (2004). A solution to the problem of monotone likelihood in Cox regression. Biometrics 57, 114–119. MR1833296 [18] Kosmidis, I. (2009). On iterative adjustment of responses for the reduction of bias in binary regression models. Technical Report 09-36, CRiSM working paper series. [19] Kosmidis, I. and D. Firth (2009). Bias reduction in exponential family nonlinear models. Biometrika 96(4), 793–804. MR2564491 [20] Lin, X. and N. E. Breslow (1996). Bias correction in generalized linear mixed models with multiple components of dispersion. Journal of the American Statistical Association 91, 1007–1016. MR1424603 [21] McCullagh, P. (1987). Tensor Methods in Statistics. London: Chapman and Hall. MR0907286 [22] Mehrabi, Y. and J. N. S. Matthews (1995). Likelihood-based methods for bias reduction in limiting dilution assays. Biometrics 51, 1543–1549. [23] Ospina, R., F. Cribari-Neto, and K. L. Vasconcellos (2006). Improved point and interval estimation for a beta regression model. Compu- tational Statistics and Data Analysis 51(2), 960 – 981. MR2297500 [24] Pace, L. and A. Salvan (1997). Principles of Statistical Inference: From a Neo-Fisherian Perspective. London: World Scientific. MR1476674 [25] Pettitt, A. N., J. M. Kelly, and J. T. Gao (1998). Bias correction for censored data with exponential lifetimes. Statistica Sinica 8, 941–964. MR1651517 [26] Prater, N. H. (1956). Estimate gasoline yields from crudes. Petroleum Refiner 35, 236–238. [27] R Development Core Team (2008). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0. [28] Sartori, N. (2006). Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. Journal of Statistical Planning and Inference 136, 4259–4275. MR2323415 [29] Schaefer, R. L. (1983). Bias correction in maximum likelihood logistic regression. Statistics in Medicine 2, 71–78. [30] Simas, A. B., W. Barreto-Souza, and A. V. Rocha (2010). Improved estimators for a general class of beta regression models. Computational Statistics and Data Analysis 54(2), 348–366. [31] Smithson, M. and J. Verkuilen (2006). A better lemon squeezer? Maximum-likelihood regression with beta-distributed dependent variables. Psychological Methods 11(1), 54–71. [32] Zorn, C. (2005). A solution to separation in binary response models. Political Analysis 13, 157–170. |