References: |
[1] R.A. Adams and J.F. Fournier. Sobolev Spaces. Elsevier Science, 2003. [2] Y. Bai and Z.-P. Li. A truncation method for detecting singular minimizers involving the Lavrentiev phenomenon. Math. Models Methods Appl. Sci., 16(6):847–867, 2006. [3] J. M. Ball. Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. Roy. Soc. London Ser. A, 306(1496):557–611, 1982. [4] J. M. Ball. Singularities and computation of minimizers for variational problems. In Foundations of computational mathematics (Oxford, 1999), volume 284 of London Math. Soc. Lecture Note Ser., pages 1–20. Cambridge Univ. Press, Cambridge, 2001. [5] J. M. Ball and G. Knowles. A numerical method for detecting singular minimizers. Numer. Math., 51(2):181–197, 1987. [6] J. M. Ball and V. J. Mizel. One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation. Arch. Rational Mech. Anal., 90(4):325–388, 1985. [7] D. Braess. Finite Elements. Cambridge University Press, Cambridge, third edition, 2007. Theory, fast solvers, and applications in elasticity theory, Translated from the German by Larry L. Schumaker. [8] F. Brezzi and M. Fortin. Mixed and hybrid ﬁnite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991. [9] A. Buﬀa and C. Ortner. Compact embeddings of broken sobolev spaces and applications. to appear in IMA J. Numer. Anal. [10] G. Buttazzo and V. J. Mizel. Interpretation of the Lavrentiev phenomenon by relaxation. J. Funct. Anal., 110(2):434–460, 1992. [11] C. Carstensen and C. Ortner. Gamma convergence in computational calculus of variations, 2009. OxMoS Preprint No. 17. [12] M. Crouzeix and P.-A. Raviart. Conforming and nonconforming ﬁnite element methods for solving the stationary Stokes equations. I. Rev. Fran¸caise Automat. Informat. Recherche Op´erationnelle S´er. Rouge, 7(R-3):33–75, 1973. [13] B. Dacorogna. Direct methods in the calculus of variations, volume 78 of Applied Mathematical Sciences. Springer-Verlag, Berlin, 1989. [14] N. Dunford and J. T. Schwartz. Linear operators. Part I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and Robert G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication. [15] L. C. Evans and R. F. Gariepy. Measure theory and ﬁne properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. [16] M. Foss. Examples of the Lavrentiev phenomenon with continuous Sobolev exponent dependence. J. Convex Anal., 10(2):445–464, 2003. [17] M. Foss, W. J. Hrusa, and V. J. Mizel. The Lavrentiev gap phenomenon in nonlinear elasticity. Arch. Ration. Mech. Anal., 167(4):337–365, 2003. [18] G. Knowles. Finite element approximation to singular minimizers, and applications to cavitation in non-linear elasticity. In Diﬀerential equations and mathematical physics (Birmingham, Ala., 1986), volume 1285 of Lecture Notes in Math., pages 236–247. Springer, Berlin, 1987. [19] A. Lavrentiev. Sur quelques probl´emes du calcul des variations. Ann. Mat. Pura Appl., 41:107–124, 1926. [20] Z.-P. Li. Element removal method for singular minimizers in variational problems involving Lavrentiev phenomenon. Proc. Roy. Soc. London Ser. A, 439(1905):131–137, 1992. [21] Z.-P. Li. Element removal method for singular minimizers in problems of hyperelasticity. Math. Models Methods Appl. Sci., 5(3):387–399, 1995. [22] B. Mani´a. Sopra un esempio di Lavrentieﬀ. Boll. Un. Mat. Ital., 13:147–153, 1934. [23] P. V. Negr´on-Marrero. A numerical method for detecting singular minimizers of multidimensional problems in nonlinear elasticity. Numer. Math., 58(2):135–144, 1990. [24] C. Ortner and D. Praetorius. On the convergence of adaptive non-conforming ﬁnite element methods. Technical Report OxMOS Preprint no. 14, University of Oxford, 2008. [25] A. Ten Eyck and A. Lew. Discontinuous Galerkin method for nonlinear elasticity. Int. J. Numer. Methods Eng., 67:1204–1243, 2006. [26] A. Visintin. Strong convergence results related to strict convexity. Comm. Partial Diﬀerential Equations, 9(5):439–466, 1984. |