References: |
[AF93] N. D. Alikakos and G. Fusco, The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions, Indiana Univ. Math. J., 42 (1993), pp. 637–674. [Bar05a] S. Bartels, A posteriori error analysis for time-dependent Ginzburg–Landau type equations, Numer. Math., 99 (2005), pp. 557–583. [Bar05b] S. Bartels, Robust a priori error analysis for the approximation of degree-one Ginzburg- Landau vortices, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 863–882. [BCD04] S. Bartels, C. Carstensen, and G. Dolzmann, Inhomogeneous Dirichlet conditions in a priori and a posteriori ﬁnite element error analysis, Numer. Math., 99 (2004), pp. 1–24. [BM10a] S. Bartels and R. M¨ uller, A posteriori error controlled local resolution of evolving interfaces for generalized Cahn-Hilliard equations, Interfaces Free Bound., 12 (2010), pp. 45–73. [BM10b] S. Bartels and R. M¨ uller, Error Control for the approximation of Allen-Cahn and Cahn-Hilliard equations with logarithmic potentials, preprint, 2010. [BM11] S. Bartels and R. M¨ uller, Quasi-optimal and robust a posteriori error control in L∞ (L2 ) for the approximation of Allen-Cahn equations past singularities, Math. Comp., 80 (2011), pp. 761–780. [Bea03] A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation, Nonlinear Anal., 54 (2003), pp. 1079–1119. [BOS07] F. Bethuel, G. Orlandi, and D. Smets, Dynamics of multiple degree Ginzburg-Landau vortices, Comm. Math. Phys., 272 (2007), pp. 229–261. [Bra78] K. A. Brakke, The Motion of a Surface by Its Mean Curvature, Math. Notes 20, Princeton University Press, Princeton, NJ, 1978. [Che94] X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-ﬁeld equations for generic interfaces, Comm. Partial Diﬀerential Equations, 19 (1994), pp. 1371–1395. [Cia02] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, Classics Appl. Math. 40, SIAM, Philadelphia, PA, 2002 (reprint of the 1978 original). [Cl´e75] P. Cl´ ement, Approximation by ﬁnite element functions using local regularization, Rev. Fran¸caise Automat. Informat. Recherche Op´erationnelle S´er. RAIRO Analyse Num´erique, 9 (1975), pp. 77–84. [DD00] K. Deckelnick and G. Dziuk, Error estimates for a semi-implicit fully discrete ﬁnite element scheme for the mean curvature ﬂow of graphs, Interfaces Free Bound., 2 (2000), pp. 341–359. [DDE05] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial diﬀerential equations and mean curvature ﬂow, Acta Numer., 14 (2005), pp. 139– 232. [DGP92] Q. Du, M. D. Gunzburger, and J. S. Peterson, Analysis and approximation of the Ginzburg–Landau model of superconductivity, SIAM Rev., 34 (1992), pp. 54–81. [EJ95] K. Eriksson and C. Johnson, Adaptive ﬁnite element methods for parabolic problems. IV. Nonlinear problems, SIAM J. Numer. Anal., 32 (1995), pp. 1729–1749. [FHL07] X. Feng, Y. He, and C. Liu, Analysis of ﬁnite element approximations of a phase ﬁeld model for two-phase ﬂuids, Math. Comp., 76 (2007), pp. 539–571. [FP03] X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature ﬂows, Numer. Math., 94 (2003), pp. 33–65. [FP04a] X. Feng and A. Prohl, Analysis of a fully discrete ﬁnite element method for the phase ﬁeld model and approximation of its sharp interface limits, Math. Comp., 73 (2004), pp. 541–567. [FP04b] X. Feng and A. Prohl, Error analysis of a mixed ﬁnite element method for the Cahn- Hilliard equation, Numer. Math., 99 (2004), pp. 47–84. [FP05] X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem, Interfaces Free Bound., 7 (2005), pp. 1–28. [FW05] X. Feng and H.-J. Wu, A posteriori error estimates and an adaptive ﬁnite element method for the Allen-Cahn equation and the mean curvature ﬂow, J. Sci. Comput., 24 (2005), pp. 121–146. [FW07] X. Feng and H.-J. Wu, A posteriori error estimates for ﬁnite element approximations of the Cahn-Hilliard equation and the Hele-Shaw ﬂow, J. Comput. Math., 26 (2008), pp. 767–796. [GW05] H. Garcke and U. Weikard, Numerical approximation of the Cahn-Larch´e equation, Numer. Math., 100 (2005), pp. 639–662. [HT01] K.-H. Hoffmann and Q. Tang, Ginzburg-Landau Phase Transition Theory and Superconductivity, Internat. Ser. Numer. Math. 134, Birkh¨ auser Verlag, Basel, 2001. [Ilm93] T. Ilmanen, Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature, J. Diﬀerential Geom., 38 (1993), pp. 417–461. [IT79] A. D. Ioffe and V. M. Tihomirov, Theory of Extremal Problems, Stud. Math. Appl. 6, North-Holland Publishing Co., Amsterdam, 1979. [KKL07] M. A. Katsoulakis, G. T. Kossioris, and O. Lakkis, Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem, Interfaces Free Bound., 9 (2007), pp. 1–30. [KNS04] D. Kessler, R. H. Nochetto, and A. Schmidt, A posteriori error control for the Allen-Cahn problem: Circumventing Gronwall’s inequality, M2AN Math. Model. Numer. Anal., 38 (2004), pp. 129–142. [K¨ uh98] T. K¨ uhn, Convergence of a fully discrete approximation for advected mean curvature ﬂows, IMA J. Numer. Anal., 18 (1998), pp. 595–634. [Lar00] M. G. Larson, A posteriori and a priori error analysis for ﬁnite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal., 38 (2000), pp. 608–625. [Lin97] T.-C. Lin, The stability of the radial solution to the Ginzburg-Landau equation, Comm. Partial Diﬀerential Equations, 22 (1997), pp. 619–632. [LL94] E. H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc, Math. Res. Lett., 1 (1994), pp. 701–715. [LM06] O. Lakkis and C. Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp., 75 (2006), pp. 1627–1658. [LU68] O. A. Ladyzhenskaya and N. N. Ural� tseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York, 1968, translated from Russian by Scripta Technica, Inc.; translation ed., Leon Ehrenpreis. [Mir95] P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation, J. Funct. Anal., 130 (1995), pp. 334–344. [dMS95] P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces, Trans. Amer. Math. Soc., 347 (1995), pp. 1533–1589. [MN03] C. Makridakis and R. H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal., 41 (2003), pp. 1585–1594. [NV97] R. H. Nochetto and C. Verdi, Convergence past singularities for a fully discrete approximation of curvature-driven interfaces, SIAM J. Numer. Anal., 34 (1997), pp. 490–512. [QV94] A. Quarteroni and A. Valli, Numerical Approximation of Partial Diﬀerential Equations, Springer Ser. Comput. Math. 23, Springer-Verlag, Berlin, 1994. [Tho97] V. Thom´ ee, Galerkin Finite Element Methods for Parabolic Problems, Springer Ser. Comput. Math. 25, Springer-Verlag, Berlin, 1997. [Wal96] N. J. Walkington, Algorithms for computing motion by mean curvature, SIAM J. Numer. Anal., 33 (1996), pp. 2215–2238. [Whe73] M. F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial diﬀerential equations, SIAM J. Numer. Anal., 10 (1973), pp. 723–759. |