
http://wrap.warwick.ac.uk/ 

 
 

 
 
 
 
 
 
 
Original citation: 
Ortner, C. and Süli, E. (2008). Analysis of a quasicontinuum method in one dimension. 
ESAIM: Mathematical Modelling and Numerical Analysis, 42(1), pp. 57-91.  
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/43814  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
Publisher’s statement: 
© EDP Sciences 
http://dx.doi.org/10.1051/m2an:2007057  
A note on versions: 
The version presented in WRAP is the published version or, version of record, and may 
be cited as it appears here. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/43814
http://dx.doi.org/10.1051/m2an:2007057
mailto:publications@warwick.ac.uk


ESAIM: M2AN ESAIM: Mathematical Modelling and Numerical Analysis
Vol. 42, No 1, 2008, pp. 57–91 www.esaim-m2an.org
DOI: 10.1051/m2an:2007057

ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION ∗

Christoph Ortner1 and Endre Süli1

Abstract. The quasicontinuum method is a coarse-graining technique for reducing the complexity of
atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori
and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic
models with Lennard–Jones type long-range interactions and a QC formulation which incorporates
several important aspects of practical QC methods. First, we prove the existence, the local uniqueness
and the stability with respect to a discrete W1,∞-norm of elastic and fractured atomistic solutions. We
use a fixed point argument to prove the existence of a quasicontinuum approximation which satisfies
a quasi-optimal a priori error bound. We then reverse the role of exact and approximate solution and
prove that, if a computed quasicontinuum solution is stable in a sense that we make precise and has a
sufficiently small residual, there exists a ‘nearby’ exact solution which it approximates, and we give an
a posteriori error bound. We stress that, despite the fact that we use linearization techniques in the
analysis, our results apply to genuinely nonlinear situations.
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1. Introduction

For the numerical simulation of microscopic material behaviour such as crack-tip studies, nano-indentation,
dislocation motion, etc., atomistic models are often employed. However, even on the lattice scale, they are
prohibitively expensive and, in fact, inefficient. Even in the presence of defects, the bulk of the material will
deform elastically and smoothly. It is therefore advantageous to couple the atomistic simulation of a defect
with a continuum or continuum-like model away from it. One of the simplest and most popular examples is
the quasicontinuum (QC) method originally developed by Ortiz et al. [18] and subsequently improved by many
other authors; see [16] for a recent survey article. The basic idea of the QC method is to triangulate an atomistic
body as in a finite element method and to allow only piecewise affine deformations in the computation, thus
considerably reducing the number of degrees of freedom. By taking every atom near a defect to be a node of
the triangulation, one obtains a continuum description of the elastic deformation while retaining a full atomistic
description of the defect. We give a detailed description of a version of the QC method analyzed in this paper
in Section 2.2.
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Figure 1. The shape of the atomistic interaction potentials with cut-off radius zc.

Despite its growing popularity in the engineering community, the mathematical and numerical analysis of
the QC method is still in its infancy. The first noteworthy analytical effort was by Lin [14] who considers
the QC approximation of the reference state (without boundary displacements or applied forces) of a one-
dimensional Lennard–Jones model. He proves that the global energy minimum of the full atomistic model as
well as that of the reduced QC model lie in a region where the interaction potential is uniformly convex and
uses these facts to derive an a priori error estimate.

E and Ming [9, 10] analyze the local QC method in the context of the heterogeneous multiscale method [8],
which requires the assumption that a nearby smooth, elastic continuum solution is available. The error is
estimated in terms of the atomic spacing in relation to the domain size as well as the mesh size.

In [15], Lin gives a priori error estimates for a modified version of the local QC method for purely elastic
deformation in two dimensions without using such an assumption, but making instead a strong hypothesis
(Assumptions 1 and 2 in [15]) on the exact solution of the atomistic model as well as on its QC approximation.
Essentially, he assumed generally what he was able to prove in one dimension, namely that both the exact and
the QC solution lie in a region where the atomistic energy is convex. For lattice domains resembling smooth
or convex sets this assumption seems intuitively reasonable but would still be difficult to verify rigorously. For
lattice domains with ‘sharp’, ‘re-entrant’ boundary sections or defects we should not expect this assumption
to hold, at least not in the form used in [15]. Some indication is also given as to how the analysis might be
extended to the case of localized defects.

Dobson and Luskin [6] give the first analysis of some important aspects of most practical QC methods, partic-
ularly the force-based approximation and the interface between regions where different types of approximation
are used (see also Sect. 2.2) which requires a so-called ghost-force correction.

Finally, we mention the work of Blanc et al. [1] where a multiscale method similar to the QC method is
analyzed. Only nearest-neighbour interactions in one dimension are considered which makes it possible to
compute the exact solutions analytically. Nevertheless, it must be emphasized that this is the only analytical
work, so far, to consider defects.

To the best of our knowledge, the a posteriori error analysis of the QC method has not so far been considered
in the literature.

It is not too surprising that so little mathematical analysis is available for atomistic material models. For
example, most techniques in continuum finite element analysis apply only if the differential operator appearing in
the equation is monotone, i.e., when the associated energy functional is convex, an assumption which is grossly
violated for atomistic problems (cf. Fig. 1). Furthermore, energy techniques, such as Γ-convergence [2–4], cannot
be applied for two reasons: first, atomistic solutions are not, in general, global energy minima (cf. [19, 23] for
further discussions of this statement), and second, proving convergence alone is meaningless since the function
space is finite-dimensional.
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The present work is an effort to unify and generalize previous results and to provide a fairly complete
approximation theory for the QC method in one dimension. We demonstrate how to derive optimal a priori
error estimates for stable solutions, i.e., strict local minimizers of the atomistic energy. In order to keep the
presentation simple, we consider only long-range (in the sense that any two atoms interact and that J ′(r) is
non-zero for all r; cf. (1)) pair-interaction energies with interaction potentials of Lennard–Jones type, but we
believe that this is not a true restriction. A detailed description of our model problem is given in Section 2.1.

Under sufficiently strong assumptions on the exact and the QC solution (in essence, one would have to assume
a fairly strong a priori bound on a discrete W1,∞-norm of the error) it is always possible to prove quasi-optimal
approximation error bounds, for example, with respect to H1-type norms. Thus, our aim in this paper is to
identify situations in which such assumptions are justified. Our primary concern is to be able to answer the
following two central questions:

(i) Under what conditions does a QC solution exist which approximates a given exact solution of the
atomistic model?

(ii) Given a computed QC solution, does an exact solution of the atomistic model approximated by the QC
solution exist?

The answer to both questions is in general negative. However, at least in the one-dimensional setting of this
paper we are able to give precise conditions under which they can be answered positively. The a priori analysis,
related to question (i), is contained in Sections 3 and 4, cf. in particular Theorems 3.2 and 4.2. The preliminary
results, Theorems 3.1 and 4.1, and the discussion in Appendix B show that the conditions can be satisfied in
practise and are reasonably sharp. The a posteriori existence condition, raised in question (ii), is analysed in
Section 5, in Theorems 5.1–5.3. We conclude in Section 6 with a numerical example which clearly demonstrates
that our analysis is both non-trivial and sufficiently sharp that it can be applied to a wide range of genuinely
nonlinear situations.

We would like to emphasize the last point further. Our use of the Inverse Function Theorem and similar
techniques may give the impression that our analysis is only valid in the linearly elastic regime. This is,
however, not the case. Since we linearize around an arbitrary solution, our results apply to genuinely nonlinear
situations. Indeed, in the numerical example that we consider, the benchmark problem ranges from the linearly
elastic regime to finite elasticity and fracture.

Both question (i) and (ii) are of course fundamental questions which should be raised for any nonlinear
problem. We refer to the work of Brezzi et al. [5] for an a priori analysis of this flavour and to the review article
by Plum [22] for a similar a posteriori analysis (though with slightly different techniques and different aims).

We conclude the introduction by fixing some notation for discrete function spaces and nonlinear functionals.

1.1. Discrete function spaces

It will be notationally convenient to define discrete versions of the usual Sobolev norms. First, for u =
(ui)N

i=0 ∈ R
N+1, we introduce the discrete derivatives

u′
i =

ui − ui−1

ε
, i = 1, . . . , N, and u′′

i =
ui+1 − 2ui + ui−1

ε2
, i = 1, . . . , N − 1,

where ε is a lattice parameter that can be adjusted to the problem at hand and should roughly be the distance
between two neighbouring atoms in an undeformed state. For 1 ≤ p < ∞, u ∈ R

N+1, 0 ≤ i1 ≤ i2 ≤ N ,
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we define the (semi-)norms

‖u‖�p
ε((i1,i2)) =

(
i2∑

i=i1

ε|ui|p
)1/p

,

|u|w1,p
ε ((i1,i2)) =

(
i2∑

i=i1+1

ε|u′
i|p
)1/p

, and

|u|w2,p
ε ((i1,i2)) =

(
i2−1∑

i=i1+1

ε|u′′
i |p
)1/p

.

For p = ∞, we define the corresponding versions,

‖u‖�∞ε ((i1,i2)) = max
i=i1,...,i2

|ui|,

|u|w1,∞
ε ((i1,i2)) = max

i=i1+1,...,i2
|u′

i|, and

|u|w2,∞
ε ((i1,i2)) = max

i=i1+1,...,i2−1
|u′′

i |.

Sums or maxima taken over empty sets are understood to be zero. If the label ((i1, i2)) is omitted we mean
i1 = 0, i2 = N . For reasons that will become apparent below, we will only require the cases p = 1, 2,∞ of these
(semi-)norms in our analysis. B(y, R) is understood to be the closed ball, centre y, radius R, with respect to
the w1,∞

ε -semi-norm.
For u, v ∈ R

N+1, we define the bilinear form

〈u, v〉ε =
N∑

i=0

εuivi.

1.2. Functionals

We fix the notation for derivatives of functionals. Let φ : R
N+1 → R be differentiable at a point u ∈ R

N+1.
We understand the derivative of φ at u as a linear functional φ′(u) = φ′(u; ·) : R

N+1 → R defined by

φ(u + v) = φ(u) + φ′(u; v) + o(|v|), as v → 0,

where |v| denotes the Euclidean norm of v. Similarly, if φ is twice differentiable at u ∈ R
N+1, the second

derivative of φ at u is a symmetric bilinear form φ′′(u) = φ′′(u; ·, ·) : R
N+1 × R

N+1 → R defined by

φ(u + v) = φ(u) + φ′(u; v) + φ′′(u; v, v) + o(|v|2), as v → 0.

When φ′ is interpreted as a linear functional we may also write φ′(u; v) = φ′(u)v. Similarly, we shall write
φ′′(u)v for the linear functional defined by φ′′(u; v, ·).
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2. Model problem and QC approximation

2.1. The atomistic model problem

Fix N ∈ N. Each vector y = (yi)N
i=0 ∈ R

N+1 represents a state of an atomistic body, consisting of N + 1
atoms. To each such deformation we associate a pair-potential energy

E(y) =
N∑

i=1

i−1∑
j=0

J(yi − yj).

Upon defining the lattice parameter ε = 1/N , and writing yi instead of εyi we can rescale the energy to

E(y) =
N∑

i=1

i−1∑
j=0

εJ
(
ε−1(yi − yj)

)
, (1)

without changing the problem. Such a scaling highlights the practically relevant case where ε is small in
comparison to the length-scale of the problem.

Typical examples of atomistic interaction potentials are the Lennard–Jones potential [12],

J(z) = Az−12 − Bz−6, (2)

and the Morse potential [17],

J(z) = exp
(
− 2α(z − 1)

)
− 2 exp

(
− α(z − 1)

)
; (3)

see also Figure 1 (the cut-off radius zc will become important in the QC approximation and should be ig-
nored for the time being). More generally, we assume that there exist z0 ∈ [−∞, +∞), zm, zt > 0 such
that z0 < zt/2 < zm < zt,

J ∈ C3(z0,∞), J ′(zm) = 0, J ′′(zt) = 0,

J(z) → +∞ as z → z0+, J(z) = +∞ ∀z ≤ z0, (4)
J ′′(z) ≥ 0 ∀z ∈ (0, zt] and J ′′(z) ≤ 0 ∀z ∈ [zt,∞).

The only condition which is not entirely natural is the assumption zt/2 < zm, which considerably simplifies the
analysis and is not a true restriction – any realistic interaction potential should satisfy this. For example, it is
satisfied for the Lennard–Jones potential (2) for all positive parameters A, B, and for the Morse potential (3)
whenever α > ln 2.

Before we define what we mean by an atomistic solution, we need to mention that atomistic deformations
are typically only local minimizers rather than global minimizers (cf. for example [19, 23]). This can be best
seen by considering an atomistic body which is clamped at the left-hand end with a small deformation applied
to the right-hand end. In that case, the physically observed Cauchy–Born state, the (approximately) affine
deformation, is not the energy minimum. Note, however, that the elastic state is the correct solution only if we
have started from an unfractured reference state.

We consider a ‘Dirichlet’ problem where the atomistic deformation is prescribed at the endpoints. It would
also be possible, and in fact easier, to consider a problem with a Dirichlet condition at one end and a Neumann
condition at the other end of the interval. Given a prescribed boundary deformation yD

N > 0, we define the set
of admissible deformations and the set of test functions respectively as

A =
{
y ∈ R

N+1 : y0 = 0, yN = yD
N

}
and A0 =

{
u ∈ R

N+1 : u0 = uN = 0
}
. (5)
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Each f ∈ R
N+1 represents a linear body force. The atomistic problem is to find a critical point of the

functional E(y)−〈f, y〉ε in A . From the assumptions we have made on the interaction potential it follows that
E is differentiable at every point which has finite energy. Thus, a critical point y of E(y) − 〈f, y〉ε in A with
finite energy must satisfy

E′(y; v) = 〈f, v〉ε ∀v ∈ A0. (6)

If y satisfies (6), we say that E′(y) = f in A .
By a solution we mean a critical point of E(y) − 〈f, y〉ε, i.e., an atomistic deformation satisfying (6). By a

stable solution we mean a strict local minimizer of E(y) − 〈f, y〉ε.
Elastic deformations are those whose gradient is sufficiently close to zm, in a region where the potential J

is convex. Such solutions exist whenever f is sufficiently small. This is measured with respect to the negative
norm

‖f‖∗ = max
v∈A0

|v|
w1,1

ε
=1

〈f, v〉ε.

Since we can interpret f as a linear functional, we can extend the definition of the negative norm to linear maps
� : A0 → R by

‖�‖∗ = max
v∈A0

|v|
w1,1

ε
=1

|�(v)|.

For future reference, we define the quantities

ρ1(z) =
∞∑

r=2

(r − 1)|J ′(rz)|, and (7)

ρ2(z1, z2) =
∞∑

r=1

r2 min
z1≤z≤z2

J ′′(rz), (8)

which are important in the analysis of existence and stability of elastic deformations. For z ∈ (0,∞) fixed, the
quantity ρ1(z) is an estimate for the residual of the affine deformation yi = zi/N which we use to derive the
existence of a reference state. We shall assume throughout that ρ1 is continuous in a neighbourhood of zm which,
for the Lennard–Jones and the Morse potentials, follows from elementary calculus. The number ρ2(z1, z2) is
used to estimate the inf-sup constant of E′′ in the set {z1 ≤ y′

i ≤ z2}. For the analysis of the QC approximation,
we will also use

ρ3(z1, z2) =
∞∑

r=1

r2 max
z1≤z≤z2

|J ′′(rz)|, (9)

which is a Lipschitz constant of E′ in the set {z1 ≤ y′
i ≤ z2}.

2.2. Quasicontinuum approximation

A QC mesh T is defined by choosing indices 0 = t0 < t1 < · · · < tK = N and setting T = {t0, . . . , tK}. For
each k = 1, . . . , K, we set hk = ε(tk − tk−1), the physical length of the kth element. The set of piecewise affine
deformations is given by

S1(T ) =
{
V ∈ R

N+1 : Vi =
tk − i

tk − tk−1
Vtk−1 +

i − tk−1

tk − tk−1
Vtk

if tk−1 ≤ i ≤ tk

}
.

We define the set of admissible QC deformations and QC test functions respectively as

A (T ) = A ∩ S1(T ) and A0(T ) = A0 ∩ S1(T ).



ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION 63

For convenience, we sometimes use the notation Vk = Vtk
for the nodal values of an S1(T ) function, and

V
′

k = V ′
tk

for its derivatives. For our analysis it is also necessary to define the interpolant Π: R
N+1 → S1(T ) by

Πu = (Πui)N
i=0 and

Πutk
= utk

, k = 0, . . . , K.

Note that if y ∈ A then Πy ∈ A (T ).
The Galerkin approximation of (6) in A (T ) is to find critical points of E(Y ) − 〈Y, f〉ε in A (T ). Any such

critical point Y ∈ A (T ) must satisfy

E′(Y ; V ) = 〈f, V 〉ε ∀V ∈ A0(T ). (10)

However, in view of the long-range atomistic interaction, which, for the purpose of evaluating the energy and its
derivatives still requires the computation of very large sums, it is helpful to make some further approximations
to the energy functional. First, it is common to replace J by a cut-off potential J̃ , which vanishes outside a
certain cut-off radius zc (cf. Fig. 1). In this case, if the deformation gradient is bounded away from zero, then
the number of atoms over which one needs to sum is bounded by a small integer. This purely one-dimensional
effect means that it is unnecessary to make any further (summation-rule type) approximations to the atomistic
energy; thus we define

Ẽ(Y ) =
N∑

i=1

i−1∑
j=0

εJ̃
(
ε−1(Yi − Yj)

)
.

For the stability analysis of the QC approximation we will need the quantity

ρ̃2(z1, z2) =
∞∑

r=1

r2 min
z1≤z≤z2

J̃ ′′(rz).

To approximate the body force potential, we can use a so-called summation rule, i.e., a discrete version of
a quadrature rule. In order to recover the full atomistic problem in the limit, it is reasonable to employ a
trapezium rule. Thus, we define the discrete bilinear form

〈f, v〉T =
N∑

i=0

εΠ(fv)i.

The QC approximation to (6) which we analyze in this paper is to find Y ∈ A (T ) satisfying

Ẽ′(Y ; V ) = 〈f, V 〉T ∀V ∈ A0(T ). (11)

Several QC methods have been formulated in the past. Our own formulation (11) is such that, in one
dimension, it can be implemented requiring only O(K) operations to assemble the energy Ẽ(Y ) − 〈f, Y 〉, the
gradient 〈Ẽ′(Y ), V 〉− 〈f, V 〉T and the hessian Ẽ′′(Y ). The three main features our QC formulation are: (i) it is
an energy-based formulation, i.e., the nonlinear system (11) is the Euler–Lagrange system of an energy; (ii) we
have used the usual reduction of degrees of freedom using P1 finite elements; and (iii) on the approximation
space the energy is approximated by the energy Ẽ in order to render (11) computable. In comparison to most
practical QC methods we have not employed any summation rule on the energy itself but only on the forcing
term. It should be straightforward to include this in our analysis but, for presentational reasons, we have
decided against this option. There are other important aspects of QC method such as force-based formulations
where the resulting nonlinear system is not the Euler–Lagrange system of an energy functional, or ghost-force
corrections at atomistic-continuum interfaces, which do not feature in our formulation. We refer to [6] for an
excellent discussion of these and other aspects of the QC method.
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2.3. Stable equilibria

In this work, we only analyze ‘stable equilibria’ of the atomistic energy (1) and the corresponding QC
approximation. In principle, we would like to include all critical points y in our definition for which E′′(y; ·, ·)
is positive definite. However, we shall be slightly more restrictive. Motivated by Proposition 2.1 below, we
shall only analyze purely elastic deformations and deformations which have a single fracture, i.e., a deformation
gradient y′

ξ � zt for exactly one ξ ∈ {1, . . . , N}.
In the following result we state the unsurprising fact that critical points with more than one fracture cannot

be uniform local minima of E. For y ∈ R
N+1, we use λ(y) to denote the smallest w1,2

ε -eigenvalue of E′′(y), i.e.,

λ(y) = min
u∈A0

|u|
w1,2

ε
=1

E′′(y; u, u).

Proposition 2.1. If y ∈ R
N+1 with y′

p ≥ zt and y′
q ≥ zt, where 1 ≤ p < q ≤ N , then λ(y) ≤ 0. If y′

p or y′
q is

strictly greater than but sufficiently close to zt, or if J is strictly increasing in (zt, +∞), then λ(y) < 0.

The proof of Proposition 2.1 will be given in Section 3.1. The result allows us to divide the stable critical
points into two groups: elastic deformation (analyzed in Sect. 3) and fractured deformation (analyzed in Sect. 4).

3. Elastic deformation

Theorem 3.1. Let J satisfy the assumptions of Section 2.1 and, in addition, assume that there exists an
R ∈ (0, min(zm − zt/2, zt − zm)) such that 2ρ1(zm) < R ρ2(zm − R, zm + R); then, the following hold:

(a) Coercivity: There exist z1, z2 ∈ R, independent of ε, such that z1 < zm < z2 < zt and

min
y∈Ze

min
u∈A0

|u|
w1,∞

ε
=1

max
v∈A0

|v|
w1,1

ε
=1

E′′(y; u, v) ≥ 1
2ρ2(z1, z2) =: c0 > 0, (12)

where Ze = {y ∈ R
N+1 : z1 ≤ y′

i ≤ z2, for i = 1, . . . , N}.
(b) Existence: Let z1, z2 be as in (a). There exist δ1, δ2 > 0, independent of ε, such that for every yD

N ∈ R

with |yD
N − zm| < δ1 (see (5) for the definition of yD

N ) and for every f ∈ R
N+1 with ‖f‖∗ ≤ δ2, there

exists a solution yf of (6) in Ze.
(c) Stability: Let z1, z2 be as in (a). Let yf , yg be solutions to (6) in Ze ∩ A , corresponding respectively to

the right-hand sides f, g ∈ R
N+1; then

|yf − yg|w1,∞
ε

≤ c−1
0 ‖f − g‖∗.

Theorem 3.1 is of theoretical relevance in that it gives a relatively sharp condition under which elastic
solutions to (6) exist and are stable. It furthermore directly relates the shape of the interaction potential to
the coercivity of the energy. In practise, we would numerically determine a region where E′′ is coercive and
then prove that it contains a reference state, i.e., a deformation y∗ such that E′(y∗) = 0, using the condition
ρ1(zm) < min(zm − z1, z2 − zm)ρ2(z1, z2). We demonstrate this in Appendix B.

For the formulation and proof of the a priori error bound, there are several options. One could simply
formulate a QC version of the existence theorem and prove that the elastic QC solution satisfies an error
estimate. However, it seems more illuminating to make fewer assumptions on the structure of the problem, and
impose stronger assumptions on a particular solution instead.

For any given f ∈ R
N+1 and a solution y ∈ A of (6), we identify three error sources: the interpolation error,

E1 = |y − Πy|w1,∞
ε

, (13)



ANALYSIS OF A QUASICONTINUUM METHOD IN ONE DIMENSION 65

the perturbation of the linear form,

E2 = max
V ∈A0(T )
|V |

w1,1
ε

=1

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣, (14)

and the perturbation of the energy,

E3 = max
Y ∈A (T )∩Ze

max
V ∈A0(T )
|V |

w1,1
ε

=1

∣∣E′(Y ; V ) − Ẽ′(Y ; V )
∣∣. (15)

Theorem 3.2.

(a) Let Ze be defined as in Theorem 3.1; then,

min
Y ∈S1(T )∩Ze

min
U∈A0(T )

|U|
w1,∞

ε
=1

max
V ∈A0(T )
|V |

w1,1
ε

=1

E′′(Y ; U, V ) ≥ 1
2ρ2(z1, z2) = c0, and (16)

max
Y ∈S1(T )∩Ze

max
U∈A0(T )

|U|
w1,∞

ε
=1

max
V ∈A0(T )
|V |

w1,1
ε

=1

E′′(Y ; U, V ) ≤ ρ3(z1, z2) =: c1. (17)

(b) Let y ∈ Ze ∩ A be a solution of (6) and define R = mini=1,...,N min(z2 − y′
i, y

′
i − z1). Assume,

furthermore, that the QC mesh T and the cut-off radius are such that

c1E1 + E2 + E3 ≤ c0R. (18)

Then, there exists a solution Y ∈ A (T ) ∩ Ze to (11) which satisfies

|y − Y |w1,∞
ε

≤ c−1
0

(
(c0 + c1)E1 + E2 + E3

)
.

If ρ̃2(z1, z2) > 0, then the QC solution is unique in A (T ) ∩ Ze.
(c) The error quantities E1, E2 and E3 can be bounded as follows:

E1 ≤ 1
2 max

k=1,...,K
hk|y|w2,∞

ε ((tk−1,tk)), (19)

E2 ≤ max
k=1,...,K

h2
k max

(
|f |w2,∞

ε ((tk−1,tk)), 2|f |w1,∞
ε ((tk−1+1,tk)) + 2|f |w1,∞

ε ((tk−1,tk−1))

)
, and (20)

E3 ≤
∞∑

r=1

r max
z1≤z≤z2

∣∣J̃ ′(rz) − J ′(rz)
∣∣. (21)

3.1. Coercivity of the atomistic problem

For this fairly straightforward but tedious analysis it is convenient to rewrite the energy and its derivatives
in the following form. First, we rewrite E as

E(y) =
N∑

i=1

i∑
j=1

εJ

(
i∑

k=j

y′
k

)
. (22)



66 C. ORTNER AND E. SÜLI

For the moment we will only need E′′, however, for future reference we first compute E′ which can be written
in the form

E′(y; w) =
N∑

i=1

i∑
j=1

εJ ′

(
i∑

k=j

y′
k

)(
i∑

n=j

w′
n

)
=

N∑
i=1

i∑
j=1

i∑
n=j

εw′
nJ ′(ε−1(yi − yj−1)

)

=
N∑

i=1

i∑
n=1

εw′
n

n∑
j=1

J ′(ε−1(yi − yj−1)
)

=
N∑

n=1

εw′
n

(
N∑

i=n

n∑
j=1

J ′(ε−1(yi − yj−1)
))

=
N∑

n=1

εF ′
n(y)w′

n, (23)

where

F ′
n(y) =

N∑
i=n

n∑
j=1

J ′(ε−1(yi − yj−1)
)
.

Here and below we shall use the notation n∨m = min(n, m) and n∧m = max(n, m). If E is twice differentiable
at a point y, then E′′(y; v, w) is more conveniently written in the form

E′′(y; v, w) =
N∑

i=1

i∑
j=1

εJ ′′(ε−1(yi − yj−1)
)( i∑

m=j

v′m

)(
i∑

n=j

w′
n

)

=
N∑

n=1

εw′
n

N∑
i=n

n∑
j=1

i∑
m=j

v′mJ ′′(ε−1(yi − yj−1)
)

=
N∑

n=1

εw′
n

N∑
i=n

i∑
m=1

n∧m∑
j=1

v′mJ ′′(ε−1(yi − yj−1)
)

=
N∑

n=1

N∑
m=1

εw′
nv′m

(
N∑

i=m∨n

n∧m∑
j=1

J ′′(ε−1(yi − yj−1)
))

=
N∑

n=1

N∑
m=1

εF ′′
nmv′mw′

n, (24)

where

F ′′
nm(y) =

N∑
i=m∨n

n∧m∑
j=1

J ′′(ε−1(yi − yj−1)
)
.

As a first application of this decomposition, we give the proof of Proposition 2.1.

Proof of Proposition 2.1. We perturb y with a displacement u ∈ A0 such that

u′
i =

⎧⎨
⎩

−ε−1/2, if i = p,
ε−1/2, if i = q, and

0, otherwise.
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Then, |u|2
w1,2

ε
= 2 and, recalling that p < q,

E′′(y; u, u) = F ′′
pp + F ′′

qq − 2F ′′
pq

=
N∑

i=p

p∑
j=1

J ′′(ε−1(yi − yj−1)
)

+
N∑

i=q

q∑
j=1

J ′′(ε−1(yi − yj−1)
)
− 2

N∑
i=q

p∑
j=1

J ′′(ε−1(yi − yj−1)
)

=
q−1∑
i=p

p∑
j=1

J ′′(ε−1(yi − yj−1)
)

+
N∑

i=q

q∑
j=p+1

J ′′(ε−1(yi − yj−1)
)
.

Since y′
p, y

′
q ≥ zt it follows that J ′′(ε−1(yi − yj−1)) ≤ 0 for all i and j appearing in the last two sums. If either

y′
p or y′

q is strictly greater than but sufficiently close to zt, or if J ′′ < 0 in (zt, +∞), then this expression is
negative. Hence the result follows. �

We now continue with the proof of coercivity of the atomistic problem. Our aim in this section is to identify
a set of deformations,

Ze = {y ∈ A : z1 ≤ y′
i ≤ z2},

with z1 < zm < z2 < zt for which E′′(y; ·, ·) satisfies the inf-sup condition

min
y∈Ze

min
u∈A0

|u|
w1,∞

ε
=1

max
v∈A0

|v|
w1,1

ε
=1

E′′(y; u, v) ≥ c0 > 0.

For convenience, we have assumed in Section 2.1 that zm > zt/2, and hence we may assume here that z1 ≥ zt/2
as well. This implies that {

J ′′(z) > 0, for z1 ≤ z ≤ z2, and
J ′′(z) ≤ 0, for z ≥ 2z1,

(25)

and consequently F ′′
nm ≤ 0 whenever n �= m.

The proof of the inf-sup condition is based on an argument related to row-diagonally-dominant matrices.
Fix u ∈ A0 and choose p, q ∈ {1, . . . , N} such that u′

p is maximal and u′
q is minimal. Since u ∈ A0 we have∑N

i=1 u′
i = 0 and hence u′

p ≥ 0 and u′
q ≤ 0. We define the test function v by

v′i =

⎧⎨
⎩

1
2ε−1, if i = p,
− 1

2ε−1, if i = q, and
0, otherwise.

It is clear from this definition that v ∈ A0 and |v|w1,1
ε

= 1. Let P = {i : u′
i > 0} and Q = {i : u′

i < 0}.
Using (24), we have

E′′(y; u, v) =
N∑

n=1

N∑
m=1

εF ′′
nm(y)u′

nv′m

=
1
2ε

N∑
n=1

εF ′′
np(y)u′

n − 1
2ε

N∑
n=1

εF ′′
nq(y)u′

n

=
1
2
F ′′

pp(y)u′
p +

1
2

∑
n	=p

F ′′
npu

′
n − 1

2
F ′′

qq(y)u′
q −

1
2

∑
n	=q

F ′′
nq(y)u′

n.
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Using (25), we see that for n �= m we have F ′′
nm(y) ≤ 0. Hence, we obtain

2E′′(y; u, v) ≥ F ′′
pp(y)u′

p +
∑

m∈P\{p}
F ′′

pm(y)u′
m − F ′′

qq(y)u′
q −

∑
m∈Q\{q}

F ′′
qm(y)u′

m

≥ u′
p

[
F ′′

pp(y) +
∑

m∈P\{p}
F ′′

pm(y)
]

+ (−u′
q)
[
F ′′

qq(y) +
∑

m∈Q\{q}
F ′′

qm(y)
]

≥ |u|w1,∞
ε

N∑
m=1

F ′′
nm(y), (26)

where n ∈ {p, q}. Thus, to prove the coercivity estimate (12), we need to show that the matrix (F ′′
nm)N

n,m=1

is strictly row diagonally dominant; more precisely, we need to obtain a lower bound on the sum in the last
expression. To do so, we split the sum as follows:

N∑
m=1

F ′′
nm(y) =

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(ε−1(yi − yj−1)
)
+

N∑
m=n+1

n∑
j=1

N∑
i=m

J ′′(ε−1(yi − yj−1)
)
+

n∑
j=1

N∑
i=n

J ′′(ε−1(yi − yj−1)
)
.

For all pairs (i, j) with i ≥ j we bound

J ′′(ε−1(yi − yj−1)) ≥ min
z1≤z≤z2

J ′′((i − j + 1)z
)

=: J ′′(i − j + 1),

which we use to estimate

N∑
m=1

F ′′
nm(y) ≥

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(i − j + 1) +
N∑

m=n+1

n∑
j=1

N∑
i=m

J ′′(i − j + 1) +
n∑

j=1

N∑
i=n

J ′′(i − j + 1). (27)

In the first triple-sum, we exchange the order of summation three times to obtain

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(i − j + 1) =
N∑

i=n

n−1∑
j=1

n−1∑
m=j

J ′′(i − j + 1)

=
n−1∑
j=1

N∑
i=n

(n − j)J ′′(i − j + 1)

≥
n−1∑
j=1

(n − j)
∞∑

r=n−j+1

J ′′(r),

where we used the fact that J ′′(r) ≤ 0 for r ≥ 2. We change the order of summation again to obtain

n−1∑
j=1

(n − j)
∞∑

r=n−j+1

J ′′(r) =
∞∑

r=2

J ′′(r)
n−1∑

j=n−r+1

(n − j) =
1
2

∞∑
r=2

r(r − 1)J ′′(r),

where we used
∑n−1

j=n−r+1(n − j) = r(r − 1)/2. Similarly, for the second triple-sum in (27), we obtain

N∑
m=n+1

n∑
j=1

N∑
i=m

J ′′(i − j + 1) ≥ 1
2

∞∑
r=2

r(r − 1)J ′′(r).
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For the third term in (27), we have

n∑
j=1

N∑
i=n

J ′′(i − j + 1) ≥
n∑

j=1

∞∑
r=n−j+1

J ′′(r) =
∞∑

r=1

n∑
j=n−r+1

J ′′(r) =
∞∑

r=1

rJ ′′(r).

On combining this with the previously obtained bounds, and recalling the definition (8), we finally arrive at

N∑
m=1

F ′′
nm(y) ≥

∞∑
r=1

r2J ′′(r) = ρ2(z1, z2). (28)

Therefore, returning to (26), we obtain

max
v∈A0

|v|
w1,1

ε
=1

E′′(y; u, v) ≥ c0|u|w1,∞
ε

, (29)

where c0 = 1
2ρ2(z1, z2). We refer to Appendix B for specific values of z1, z2 and c0 for the Lennard–Jones and

the Morse potential.

Corollary 3.3. If y ∈ Ze then E′′(y) is positive definite in

A ′
0 = {u ∈ R

N+1 : u0 = 0}.

Proof. From (28) we deduce that the matrix (F ′′
nm)N

n,m=1 is strictly row diagonally dominant. Using the repre-
sentation (24), and noting that each u ∈ A ′

0 has a unique representation in terms of u′ and vice versa, we can
immediately deduce that E′′(y) is positive definite in A ′

0 . �

3.2. Proof of Theorem 3.1

The proof of Theorem 3.1 as well as its extension to fracture solutions in Section 4 rely on the following local
existence result which is, in essence, a continuation principle for the Inverse Function Theorem.

Lemma 3.4. Let ‖ · ‖ be a norm in A0, R > 0 and ỹ ∈ A , and define Z = {y ∈ A : ‖y − ỹ‖ ≤ R}. Suppose,
further, that:

(i) Φ: R
N+1 → (−∞, +∞] is three times continuously differentiable in Z ;

(ii) Φ′(ỹ) = f̃ in A , i.e., Φ′(ỹ; v) = 〈f̃ , v〉ε ∀v ∈ A0;
(iii) there exists c0 > 0 such that

c0 ≤ min
y∈Z

min
u∈A0
‖u‖=1

max
v∈A0

|v|
w1,1

ε
=1

Φ′′(y; u, v); and (30)

(iv) Φ′′(y) is positive definite for every y ∈ Z .
Then, for each f ∈ R

N+1 satisfying ‖f − f̃‖∗ ≤ c0R, there exists a unique y ∈ Z such that Φ′(y) = f in A .
Furthermore, the solution y satisfies

‖y − ỹ‖ ≤ c−1
0 ‖f − f̃‖∗. (31)

Proof. As mentioned above, this result is a standard continuation principle for the Inverse Function Theorem
and we therefore omit a complete proof here. We refer to the Zeidler’s monograph [25] for an extensive discussion.

Let us simply note that (30) implies that Φ′′(y) is an isomorphism for each y ∈ Z and thus, in each point
y ∈ Z the Inverse Function Theorem can be applied. This fact can be used to successively solve for yt given by
Φ′(yt) = (1− t)f̃ + tf . Given the condition ‖f − f̃‖∗ ≤ c0R, it follows that this process can be continued up to
t = 1 which yields the desired solution y. The uniqueness, which cannot in general be deduced, is guaranteed
by the assumption that Φ′′ is positive definite which implies that Φ is strictly convex in Z . �
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Lemma 3.4 gives a clear path to the proof of Theorem 3.1. We have already established the necessary
conditions for coercivity in the previous section.

To show the existence of a reference state, we define the deformation yD
i = εiyD

N , where yD
N will be fixed

later, and estimate the residual E′(yD; ·). It is more convenient to do this using the following alternative
representation of E′(y; v):

E′(y; v) =
N−1∑
n=1

E′
n(y)vn ∀y ∈ A , ∀v ∈ A0, (32)

where

E′
n(y) =

n−1∑
i=0

J ′(ε−1(yn − yi)
)
−

N∑
i=n+1

J ′(ε−1(yi − yn)
)
, n = 1, . . . , N − 1. (33)

Using the embedding inequality ‖v‖�∞ε ≤ 1
2 |v|w1,1

ε
(cf. Lem. A.3) we can estimate

|E′(y; v)| ≤
N−1∑
n=1

|E′
n(y)|‖v‖�∞ε ≤ 1

2

N−1∑
n=1

|E′
n(y)||v|w1,1

ε
,

which implies that

‖E′(y)‖∗ ≤ 1
2

N−1∑
n=1

|E′
n(y)|. (34)

Setting y = yD in (33), we have

E′
n(yD) =

⎧⎪⎪⎨
⎪⎪⎩

∑2n−N−1
i=0 J ′((n − i)yD

N

)
, if n ≥ (N + 1)/2,

−
∑N

i=2n+1 J ′((i − n)yD
N

)
, if n ≤ (N − 1)/2,

0, otherwise,

and, taking absolute values,

|E′
n(yD)| ≤

∞∑
r=n∧(N−n)+1

|J ′(ryD
N )|.

Thus, we can estimate

‖E′(yD)‖∗ ≤ 1
2

N−1∑
n=1

|E′
n(yD)| ≤

∞∑
n=1

∞∑
r=n+1

|J ′(ryD
N )|

=
∞∑

r=2

r−1∑
n=1

|J ′(ryD
N )| =

∞∑
r=2

(r − 1)|J ′(ryD
N )| = ρ1(yD

N ).

We now apply Lemma 3.4 with Φ = E, ‖ ·‖ = | · |w1,∞
ε

, ỹ = yD and f = 0. From the assumptions in Theorem 3.1
it follows that there exist z1, z2 such that

ρ1(zm) < 1
2ρ2(z1, z2) × min(z2 − zm, zm − z1).

Since ρ1 is assumed to be continuous it furthermore follows that there exists δ1 > 0 such that, for |yD
N −zm| ≤ δ1,

ρ1(yD
N ) < 1

2ρ2(z1, z2) × min(z2 − yD
N , yD

N − z1). (35)
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It therefore follows from Lemma 3.4 that there exists a reference state y∗ ∈ A satisfying (6) with f = 0. From
the stability estimate (31), we infer that

|y∗ − yD|w1,∞
ε

≤ c−1
0 ‖E′(yD)‖∗ ≤ 2

ρ1(yD
N )

ρ2(z1, z2)
< min(z2 − yD

N , yD
N − z1).

Hence, there exists R > 0 such that {y ∈ A : |y − y∗|w1,∞
ε

≤ R} ⊂ Ze. Applying Lemma 3.4 again, it follows
that, for ‖f‖∗ ≤ c0R =: δ2, there exists a unique solution to (6) in Ze.

3.3. Coercivity of the QC approximation

In order to apply a similar technique as in Section 3.2 to prove the existence of a QC solution near an exact
solution, we need to show that E′′ is also coercive in A0(T ), i.e., that there exists a constant c̃0 > 0 such that

min
Y ∈Ze∩A (T )

min
U∈A0(T )

|U|
w1,∞

ε
=1

max
V ∈A0(T )
|V |

w1,1
ε

=1

E′′(Y ; U, V ) ≥ c̃0.

To this end, fix U ∈ A0(T ) and pick p, q ∈ {1, . . . , K} such that U
′

p is maximal and U
′

q is minimal. Similarly as
before, we also let P = {i : U

′
i > 0} and Q = {i : U

′
i < 0}, and we define

V
′

k =

⎧⎪⎪⎨
⎪⎪⎩

1
2h−1

p , if k = p,

− 1
2h−1

q , if k = q, and

0, otherwise.

This gives

E′′(Y ; U, V ) =
N∑

n=1

N∑
m=1

εF ′′
nm(Y )U ′

nV ′
m

=
1

2hp

N∑
n=1

tp∑
m=tp−1+1

εF ′′
nm(Y )U ′

n − 1
2hq

N∑
n=1

tq∑
m=tq−1+1

εF ′′
nm(Y )U ′

n

≥
U

′
p

2hp

tp∑
m=tp−1+1

ε
∑
n∈P

F ′′
nm(Y ) −

U
′

q

2hq

tq∑
m=tq−1+1

ε
∑
n∈Q

F ′′
nm(Y ).

Using the estimate (28), we obtain

E′′(Y ; U, V ) ≥
U

′
p

2hp

tp∑
m=tp−1+1

ερ2(z1, z2) −
U

′
q

2hq

tq∑
m=tq−1+1

ερ2(z1, z2) ≥ c0|U |w1,∞
ε

,

where c0 = 1
2ρ2(z1, z2), i.e., we have the same inf-sup constant as in the case of the full test-space A0.

If we now replace E by Ẽ in all the above computations, we obtain instead

min
Y ∈A (T )∩Ze

min
U∈A0(T )

|U|
w1,∞

ε
=1

max
V ∈A0(T )
|V |

w1,1
ε =1

Ẽ′′(Y ; U, V ) ≥ 1
2 ρ̃2(z1, z2). (36)

As in Section 3.1 we can again prove that Ẽ′′ is positive definite.
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Corollary 3.5. Suppose that ρ̃2(z1, z2) > 0. Then, for every Y ∈ Ze, Ẽ′′(Y ) is positive definite in

A ′
0(T ) = {U ∈ A (T ) : U0 = 0}.

3.4. Proof of Theorem 3.2

Stimulated by the a priori error analysis in [21], we begin by rewriting the QC approximation as a fixed-point
problem. To this end, assume that Y ∈ A (T ) ∩ Ze satisfies (11). Let y ∈ A ∩ Ze be an exact solution and let
Πy be its interpolant. We then have, for all V ∈ A0(T ),

∫ 1

0

E′′(Πy + τ(Y − Πy); Y − Πy, V
)
dτ = E′(Y ; V ) − E′(Πy; V ) (37)

= E′(Y ; V ) − Ẽ′(Y ; V ) + 〈f, V 〉T − 〈f, V 〉ε + E′(y; V ) − E′(Πy; V ) =: �Y (V ).

In fact, we see that Y is a solution of (11) if, and only if, it solves (37) which we rewrite as a fixed point problem.
Let ϕ ∈ A (T ) ∩ Ze. We define the fixed point map L : A (T ) ∩ Ze → A (T ), Yϕ = L (ϕ) by

∫ 1

0

E′′(Πy + τ(ϕ − Πy); Yϕ − Πy, V ) dτ = �ϕ(V ) ∀V ∈ A0(T ). (38)

Corollary 3.3 implies that there exists a unique Yϕ satisfying (38). Furthermore, we note that the construction
of the test function V in Section 3.3 was independent of the base point and can therefore be performed uniformly
for all Yτ = Πy + τ(ϕ − Πy). It therefore follows immediately that

∫ 1

0

E′′(Yτ ; Yϕ − Πy, V ) dτ ≥ c0|Yϕ − Πy|w1,∞
ε

,

and we obtain

c0|Yϕ − Πy|w1,∞
ε

≤ max
V ∈A0(T )
|V |

w1,1
ε =1

|�ϕ(V )| = ‖�ϕ‖∗ ≤ c1E1 + E2 + E3,

where c1 is a Lipschitz constant for E′ in Ze and Ei, i = 1, 2, 3, are defined at the beginning of Section 3. Thus,
in order for L to map A (T ) ∩ Ze into itself, it is sufficient that

c1E1 + E2 + E3 ≤ c0 min
i=1,...,N

min(Πy′
i − z1, z2 − Πy′

i).

Since Πytk
= ytk

for k = 0, . . . , K, it follows that

tk∑
i=tk−1+1

εy′
i − hk

(
Πy
)′
k

= 0,

and hence min(Πy′
i−z1, z2−Πy′

i) ≤ R. We conclude that if (18) is satisfied then L maps A (T )∩Ze into itself.
The Implicit Function Theorem implies that L is continuous. Therefore, by Brouwer’s fixed point theorem,
L has a fixed point Y in A (T ) ∩ Ze. From our discussion above it follows that Y is a solution to (11). From
Corollary 3.5 we see that if ρ̃2(z1, z2) > 0 then Ẽ is strictly convex in A (T )∩Ze and hence the QC solution is
unique in that set. This concludes the proof of part (b) of Theorem 3.2. We are only left to prove the stated
bounds on c1, and Ei, i = 1, 2, 3.
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To bound E′′ in Ze, we compute

|E′′(θ; U, V )| =
N∑

n=1

N∑
m=1

ε|F ′′
nm(θ)||U ′

n||V ′
m|

≤ |U |w1,∞
ε

N∑
m=1

ε|V ′
m|

N∑
n=1

|F ′′
nm(θ)|

≤ |U |w1,∞
ε

|V |w1,1
ε

max
m=1,...,N

N∑
n=1

|F ′′
nm(θ)|.

We can bound the sum in the last term by a computation identical to that in (28) except that the signs are
reversed, and thus we obtain (17).

To bound E1 we simply use Theorem A.4 with p = ∞. For E2, we use Theorem A.4 with p = 1 to estimate

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣ ≤ N∑

i=1

ε
∣∣Π(fV )i − fiVi

∣∣ ≤ K∑
k=1

h2
k|Π(fV )|w2,1

ε ((tk−1,tk)).

For i = tk−1 + 1, . . . , tk − 1, using the fact that V ′′
i = 0, we have

(fV )′′i = ε−2(fi+1Vi+1 − 2fiVi + fi−1Vi−1)

=
fi+1 − 2fi + fi−1

ε2
Vi +

fi+1 − fi

ε

Vi+1 − Vi

ε
+

fi − fi−1

ε

Vi − Vi−1

ε
·

Thus, using the discrete Friedrichs inequality (69), we obtain

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣ ≤

K∑
k=1

h2
k

[
|f |w2,∞

ε ((tk−1,tk))‖V ‖�1ε((tk−1+1,tk−1))

+ (|f |w1,∞
ε ((tk−1+1,tk)) + |f |w1,∞

ε ((tk−1,tk−1)))|V |w1,1
ε ((tk−1,tk))

]
≤ max

k=1,...,K
h2

k max
(
|f |w2,∞

ε ((tk−1,tk)), 2|f |w1,∞
ε ((tk−1+1,tk))

+ 2|f |w1,∞
ε ((tk−1,tk−1))

) (
‖V ‖�1ε

+ 1
2 |V |w1,1

ε

)
.

We apply (69) to estimate ‖V ‖�1ε
≤ 1

2 |V |w1,1
ε

and thus prove the bound (20).
Finally, defining F̃ ′

n analogously to F ′
n, and using (23), the bound (21) on E3 follows from

|E′(θ; V ) − Ẽ′(θ; V )| ≤
N∑

n=1

ε|F ′
n(θ) − F̃ ′

n(θ)||V ′
n| ≤ max

n=1,...N
|F ′

n(θ) − F̃ ′
n(θ)||V |w1,1

ε
,

and a computation that is identical to the one leading to (35).

4. Fracture

We now look at a class of solutions of the atomistic model (6) with a single defect — a fracture. We fix an
index ξ ∈ {1, . . . , N} and consider deformations y ∈ A such that y′

ξ � zt while z1 ≤ y′
i ≤ z2 < zt for i �= ξ.

The fracture is the broken interaction between the two atoms at yξ and yξ−1. Elastic states and fractured states
with a single fracture are the only stable steady states in one dimension. If at least two gradients y′

i, y
′
j are

greater than or equal to zt, it can be easily seen that E′′(y) has at least one negative eigenvalue (cf. Sect. 2.3).
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However, even with a single fracture, it should be apparent from the analysis of Section 3.1 that we cannot
expect (29) to hold when |u|w1,∞

ε
= |u′

ξ| since J ′′(u′
ξ) ≈ 0. We therefore change the norm in which we analyze

the error to the norm | · |w1,∞
ε,f

defined by

|u|w1,∞
ε,f

= max
i=1,...,N

i�=ξ

|u′
i|.

Since we have imposed a Dirichlet condition at both endpoints, | · |w1,∞
ε,f

is indeed a norm on A0. We use Bf (y, R)
to denote the balls, centre y and radius R, with respect to the | · |w1,∞

ε
-semi-norm. As was hinted above, we

define
Zf =

{
y ∈ A : y′

ξ ≥ zf and z1 ≤ y′
i ≤ z2 for i = 1, . . . , N, i �= ξ

}
,

where the constants zi satisfy z1 < zm < z2 < zt, and zf is sufficiently large (which we will make precise).
In order to simplify the proofs of coercivity we assume that

J ′′′(z) ≥ 0 for z ≥ zf . (39)

This typically imposes a negligible lower bound on zf . We shall also need a further measure of stability,

ρ2,f (zf , z1) =
∞∑

r=0

(r + 1)2J ′′(zf + rz1).

The definition of ρ2,f does not involve z2 because we have assumed (39). The function ρ̃2,f corresponding to
the cut-off potential J̃ is defined analogously. In order to be able to neglect the effect of long-range interactions
across the crack, we assume that

∀a > 0 ∀z1 ≥ zt/2 ∃ zD = zD(a, z1) : Nρ2,f

(
N(zD − zt), z1

)
≥ −a. (40)

This would typically involve a decay condition for J ′′, for example, |J ′′(z)| � z−k, for some k > 3 and
z sufficiently large.

Theorem 4.1. Let J satisfy the assumptions of Section 2.1 as well as conditions (39) and (40). Assume also
that there exists R ∈ (0, min(zm − zt/2, zt − zm)) such that 4ρ1(zm) < Rρ2(zm −R, zm +R); then, the following
hold:

(a) Coercivity: There exist z1 < zm < z2 < zt independent of ε, and zf = O(ε−1) such that

min
y∈Zf

min
u∈A0

|u|
w1,∞

ε,f

=1

max
v∈A0

|v|
w1,1

ε
=1

E′′(y; u, v) ≥ 1
2

(
ρ2(z1, z2) + 2Nρ2,f(zf , z1)

)
=: c0 > 0, (41)

where Zf is defined as above.
(b) Existence: There exist δ1, δ2 > 0, independent of ε, such that for every yD

N ∈ R with yD
N ≥ zm + δ1 and

for every f ∈ R
N+1 with ‖f‖∗ ≤ δ2, there exists a solution yf of (6) in Zf .

(c) Stability: Let yf , yg be solutions to (6) in Zf ∩ A with respective right-hand sides f and g; then

|yf − yg|w1,∞
ε,f

≤ c−1
0 ‖f − g‖∗.

For the QC error bounds, let E1 = |y − Πy|w1,∞
ε,f

and let E2 and E3 be defined as in Section 3.

Theorem 4.2. Let J satisfy the conditions of Section 2.1 as well as (39) and (40), and let Zf be defined as
above. Furthermore, assume that {ξ − 1, ξ} ⊂ T .
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(a) We have the coercivity and continuity estimates

min
Y ∈Zf

min
U∈A0(T )

|U|
w1,∞

ε,f

=1

max
V ∈A0(T )
|V |

w1,1
ε

=1

E′′(Y ; U, V ) ≥ 1
2

(
ρ2(z1, z2) + 2Nρ2,f(zf , z1)

)
=: c0, and (42)

max
Y ∈S1(T )∩Zf

max
U∈A0(T )

|U|
w1,∞

ε,f

=1

max
V ∈A0(T )
|V |

w1,1
ε

=1

E′′(Y ; U, V ) ≤ ρ3(z1, z2) =: c1. (43)

(b) Suppose that zf > zt is sufficiently large so that c0 > 0 (cf. (40)). Let y ∈ Zf ∩ A be a solution of (6)
and define R = mini	=ξ min(z2 − y′

i, y
′
i − z1). Assume furthermore that the QC mesh T is sufficiently

fine so that
c1E1 + E2 + E3 ≤ c0 min

(
R, ε(y′

ξ − zf )
)
. (44)

Then, there exists a solution Y ∈ A (T ) ∩ Zf of the QC method (11) which satisfies

|y − Y |w1,∞
ε,f

≤ c−1
0

(
(c0 + c1)E1 + E2 + E3

)
.

If ρ̃2(z1, z2) + 2Nρ̃2,f(zf , z1) > 0 then the QC solution is unique in A (T ) ∩ Zf .
(c) The error quantities E1 and E2 satisfy the same bounds as in Theorem 3.2, while E3 is now bounded by

E3 ≤
∞∑

r=1

r max
[

max
z1≤z≤z2

∣∣J̃ ′(rz) − J ′(rz)
∣∣, max

z1≤z≤z2

∣∣J̃ ′(zf + (r − 1)z) − J ′(zf + (r − 1)z)
∣∣] .

As we remark in Section 4.4, the condition (44) is not overly restrictive. We may think, for example that
zf = O(ε−1) and y′

ξ ≥ 2zf . In that case, the upper bound required on the error terms is independent of ε.

4.1. Coercivity of the atomistic problem
For the proof of coercivity in the case of fracture we make use of the fact that the fracture problem can, to some

extent, be seen as a combination of two mixed Dirichlet–Neumann problems. Fix y ∈ Zf and u ∈ A0. Upon
multiplying u by (−1), we may assume without loss of generality that u′

p = |u|w1,∞
ε,f

for some p ∈ {1, . . . , N}\{ξ}.
Let P = {i : u′

i > 0} and Q = {j : u′
j < 0} and define

v′n =

⎧⎪⎪⎨
⎪⎪⎩

1
2ε−1, if n = p,

− 1
2ε−1, if n = ξ,

0, otherwise.

In that case,

E′′(y; u, v) =
N∑

n=1

N∑
m=1

εF ′′
nm(y)u′

nv′m

=
N∑

n=1

εu′
n

[
F ′′

np(y)
1
2ε

− F ′′
nξ(y)

1
2ε

]

≥ 1
2

∑
n∈P

u′
nF ′′

np(y) − 1
2

∑
n∈Q

u′
nF ′′

nξ(y).

If we divide the sum over n ∈ P into those indices which lie on the same side of the fracture as p and the rest,
we can estimate F ′′

np ≥ F ′′
nξ for those n which lie on the opposite side of the fracture from p (cf. condition (39)).
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If we assume, without loss of generality, that p < ξ, we obtain

E′′(y; u, v) ≥ 1
2

∑
n<ξ

|u′
n|F ′′

np(y) +
∑
n	=ξ

|u′
n|F ′′

nξ(y) + |u′
ξ|F ′′

ξξ(y).

Since u ∈ A0, we have |u′
ξ| ≤ (N − 1)|u|w1,∞

ε,f
and hence, we obtain

E′′(y; u, v) ≥ 1
2
|u|w1,∞

ε,f

⎡
⎣∑

n<ξ

F ′′
np(y) +

∑
n	=ξ

F ′′
nξ(y) + (N − 1)F ′′

ξξ(y)

⎤
⎦ . (45)

For the first sum in (45) we can use the same procedure as in the elastic case, i.e.,
∑
n<ξ

F ′′
np(y) ≥ ρ2(z1, z2),

while the second sum as well as F ′′
ξξ should be practically zero. In this regime the forces should be so weak that

we can make fairly crude estimates. Using assumption (39) we have F ′′
nξ ≥ F ′′

ξξ for all n and hence only need to
estimate F ′′

ξξ,

F ′′
ξξ(y) =

N∑
i=ξ

ξ∑
j=1

J ′′(ε−1(yi − yj−1)
)
≥

N∑
i=ξ

ξ∑
j=1

J ′′(zf + (i − j)z1

)

≥
ξ∑

j=1

∞∑
r=ξ−j

J ′′(zf + rz1) ≥
∞∑

r=0

ξ∑
j=ξ−r

J ′′(zf + rz1)

=
∞∑

r=0

(r + 1)J ′′(zf + rz1) = ρ2,f(zf , z1).

Putting everything together, we obtain

E′′(y; u, v) ≥ 1
2

(
ρ2(z1, z2) + 2(N − 1)ρ2,f(zf , z1)

)
|u|w1,∞

ε,f
. (46)

4.2. Proof of Theorem 4.1

First, let us finalize the discussion of coercivity. To this end, let c′0 = 1
2ρ2(z1, z2), which we assume to be

positive, and choose
zf = N

(
zD(αc′0, z1) − zt

)
,

where α ∈ (0, 1) is a number that we shall determine in a moment. In that case, (41) holds with c0 = (1−α)c′0.
In order to use Lemma 3.4 as in Section 3.2, we need to characterize the balls with respect to the | · |w1,∞

ε
-

semi-norm. This is achieved in the following lemma.

Lemma 4.3. Suppose that yD
N ≥ zD(αc′0, z1). Then

A ∩ Bf (ỹ, R) ⊂ Zf ∀ỹ ∈ Zf , ∀R ≤ min
n	=ξ

min(z2 − ỹ′
n, ỹ′

n − z1). (47)

Proof. If ỹ ∈ Zf and y ∈ A ∩ Bf (ỹ, R) then

εy′
ξ = yD

N −
∑
i	=ξ

εy′
i ≥ zD − z2 ≥ zD − zt = εzf . �
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Thanks to Lemma 4.3, the coercivity estimate (41) holds for all y ∈ B(ỹ, R) which makes it possible to use
Lemma 3.4.

As in Section 3.2 we use Lemma 3.4 to construct a reference state. Let yD be a preliminary reference state
defined as follows,

yD
i =

{
iεzm, if i < ξ,
yD

N − zm(1 − iε), if i ≥ ξ.

As in the elastic case, we estimate the residual of yD. Fix n ∈ N and assume, without loss of generality, that
n < ξ. Since zf ≥ zt and J ′′(z) ≤ 0 for z > zt it follows that J ′ is decreasing in that domain. In particular,
we have |J ′(zf + z)| ≤ |J ′(z1 + z)| whenever z ≥ z1. Using this fact, and otherwise closely following the
computations in Section 3.2, we have

|E′
n(yD)| ≤

∞∑
r=n∧(ξ−n)+1

∣∣J ′(rzm)
∣∣.

Summing over n < ξ, we obtain ∑
n<ξ

|E′
n(yD)| ≤

∞∑
r=2

(r − 1)|J ′(rzm)|.

We now add the terms with n ≥ ξ which gives

‖E′(yD)‖∗ ≤ 2ρ1(zm). (48)

Setting Φ = E, ‖ · ‖ = | · |w1,∞
ε,f

, ỹ = yD, f̃ = E′(ỹ) and f = 0 in Lemma 3.4 we can deduce the existence of
y∗ ∈ Zf , satisfying E′(y∗) = 0. We note that

|y∗
i
′ − zm| ≤ c−1

0 ‖E′(yD)‖∗ ≤ 4ρ1(zm)
(1 − α)ρ2(z1, z2)

, i �= ξ. (49)

If the conditions of Theorem 4.1 are satisfied, then there exists α > 0, independent of ε, such that

2
ρ1(zm)

(1 − α)ρ2(z1, z2)
< R,

which implies that y∗ ∈ int(Zf ∩ A ). All results of Theorem 4.1 now follow from another application of
Lemma 3.4 setting Φ = E, ‖ · ‖ = | · |w1,∞

ε
, ỹ = y∗ and f̃ = 0. In particular, it is sufficient to assume that

yD
N ≥ zD(αc′0, z1).

4.3. Coercivity of the QC approximation

First of all, we recall from the assumption of Theorem 4.2 that {ξ − 1, ξ} ⊂ T . This is in fact a necessary
condition to make an approximation of a fracture in w1,∞

ε,f possible.

Let Y ∈ Zf and U ∈ A0(T ). Following Sections 4.1 and 3.3 we assume that U
′

p = |U |w1,∞
ε,f

and define the
test function V by

V
′

k =

⎧⎪⎨
⎪⎩

1
2h−1

p , if k = p

− 1
2ε−1, if k = ξ

0, otherwise.
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Then, assuming again without loss of generality that tp < ξ, and using (39), we have

E′′(Y ; U, V ) =
N∑

n=1

N∑
m=1

εF ′′
nm(Y )U ′

nV ′
m

=
ε

2hp

N∑
n=1

tp∑
m=tp−1+1

F ′′
nm(Y )U ′

n − 1
2

N∑
n=1

F ′′
nξ(Y )U ′

n

≥ ε

2hp

tp∑
m=tp−1+1

⎡
⎣∑

n<ξ

F ′′
nm(Y )U ′

n +
∑

n≥ξ,n∈P

F ′′
nξ(Y )U ′

n

⎤
⎦−

∑
n∈Q

F ′′
nξ(Y )U ′

n

≥ ε

2hp

tp∑
m=tp−1+1

∑
n<ξ

F ′′
nm(Y )U ′

n − 1
2

∑
n	=ξ

F ′′
nξ(Y )|U ′

n| −
1
2
|U ′

ξ|F ′′
ξξ(Y ).

We estimate the first term as in Section 3.3 and the second and third term as in Section 4.1, which gives

E′′(Y ; U, V ) ≥ 1
2 |U |w1,∞

ε,f

(
ρ2(z1, z2) + 2Nρ2,f(zf , z1)

)
,

and thus (42). If E is replaced by Ẽ, we have instead

Ẽ′′(Y ; U, V ) ≥ 1
2 |U |w1,∞

ε,f

(
ρ̃2(z1, z2) + 2Nρ̃2,f(zf , z1)

)
. (50)

4.4. Proof of Theorem 4.2

To prove the QC error estimate we can repeat the fixed point argument of Section 3.4 almost verbatim.
Only two modifications need to be made. First, as in the existence proof of Section 4.2 we need to show that
a solution of the linearized problem appearing in the fixed point argument lies in Zf . This can be done by the
same argument as in the proof of Lemma 4.3, if we choose yD

N sufficiently large. This method was suitable for
the existence theorem where we needed to construct a reference solution. Now, however, the reference solution
is given by the exact solution y which allows us to follow a more general approach.

As in Section 3.4 let Yϕ = L(ϕ); then,

ε(Yϕ)′ξ = yD
N −

∑
i	=ξ

ε(Yϕ)′i =
N∑

i=1

εΠy′
i −
∑
i	=ξ

ε(Yϕ)′i ≥ εy′
ξ − |Πy − Yϕ|w1,∞

ε,f
.

Hence, in order to guarantee that Yϕ ∈ Zf , we require

y′
ξ ≥ zf + N |Πy − Yϕ|w1,∞

ε,f
.

This may seem an insurmountable requirement at first but remember that y′
ξ is typically of order N . For

|Πy − Yϕ|w1,∞
ε,f

we have the estimate

|Yϕ − Πy|w1,∞
ε,f

≤ c−1
0

(
c1E1 + E2 + E3

)
.

Hence, if (44) holds, then we can deduce the existence of a QC solution in the set Zf .
Our second modification of the proof of Section 3.4 is to compute a new bound for E3. We use (23) again to

estimate ∣∣E′(θ; V ) − Ẽ′(θ; V )
∣∣ = N∑

n=1

ε
∣∣F ′

n(θ) − F̃ ′
n(θ)

∣∣|V ′
n| ≤ |V |w1,1

ε
max

n=1,...,N

∣∣F ′
n(θ) − F̃ ′

n(θ)
∣∣.
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For each n, we have

|F ′
n(θ) − F̃ ′

n(θ)| ≤
n∑

i=1

N∑
j=n

∣∣J ′(ε−1(θi − θj−1)
)
− J̃ ′(ε−1(θi − θj−1)

)∣∣.
As in the elastic case, we can estimate and rearrange this sum to obtain (45).

5. A POSTERIORI existence and error analysis

In Sections 3 and 4 we have analyzed, in the case of elastic deformation and fracture, the conditions under
which a QC approximation to an exact atomistic solution to (6) exists, and have estimated its approximation
error. In the present section, we turn to the second question which we posed in the Introduction: Given a
computed QC solution, is it possible to prove that an exact solution of the atomistic model exists which the
QC solution approximates in a sufficiently strong sense?

Let us first discuss this question in a slightly more abstract form. Let F : X → Y ∗ be a nonlinear mapping,
where X and Y are Banach spaces and Y ∗ is the topological dual of Y . If y ∈ X , if F ′(y) is an isomorphism
and if Y ∈ X lies in a certain neighbourhood of y (determined by a local Lipschitz constant of F ′) then

‖y − Y ‖X ≤ 2‖F ′(y)−1‖L(Y ∗,X )‖F (Y )‖Y ∗ .

This estimate was used, for example, by Verfürth [24], Lemma 2.1 for a posteriori error estimation for finite
element methods for nonlinear equations. However, by reversing the role of y and Y in the above argument,
it is not always necessary to assume the existence of a ‘nearby’ exact solution a priori. To see this, set
G (v) = F (v)−F (Y ). Clearly, Y is a solution of G (Y ) = 0. Thus, if G ′(Y ) = F ′(Y ) is an isomorphism, and if
‖F (Y )‖Y ∗ is sufficiently small then, by the Inverse Function Theorem, there exists a solution to G (y) = −F (Y ),
or equivalently to F (y) = 0, in a neighbourhood of Y . After making this argument precise (and sharp), we
obtain Theorem 5.1 below. For a recent review article of other applications of this idea we refer to [22].

First, however, we modify our assumptions slightly. We shall assume from now on that J has a finite cut-
off radius, i.e., in addition to (4) we assume that there exists zc > zt such that J(z) = 0 for all z ≥ zc

(cf. Fig. 1). This allows us to assume that J̃ = J . Also, for the sake of a more condensed notation, we define
Φ(y) = E(y) − 〈f, y〉ε, y ∈ R

N+1; and Φ̃(Y ) = E(Y ) − 〈f, Y 〉T , Y ∈ S1(T ). We can then rewrite (6) as
Φ′(y; v) = 0, v ∈ A0; and (11) as Φ̃′(Y ; V ) = 0, V ∈ A0(T ). We note that E′′ = Φ′′ = Φ̃′′.

In the following theorem, ‖ ·‖ should be taken either as | · |w1,∞
ε

or as | · |w1,∞
ε,f

, as defined in Sections 1.1 and 4.
See Section 6.2 for an algorithm to compute the radius R(Y ) and the stability constant µ(Y ).

Theorem 5.1 (a posteriori existence). Let ‖ · ‖ be a norm in A0. Let Y ∈ A and let R(Y ), µ(Y ) and η(Y ) be
non-negative numbers satisfying

0 < µ(Y ) ≤ min
y∈A

‖y−Y ‖≤R(Y )

min
u∈A0
‖u‖=1

max
v∈A0

|v|
w1,1

ε
=1

E′′(y; u, v), and (51)

‖Φ′(Y )‖∗ ≤ η(Y ). (52)

If η(Y ) ≤ µ(Y )R(Y ), then there exists y ∈ A satisfying Φ′(y) = 0 in A and such that

‖y − Y ‖ ≤ η(Y )
µ(Y )

· (53)

Proof. This theorem is an immediate corollary of Lemma 3.4 by setting ỹ = Y and f̃ = Φ′(Y ). �
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Theorem 5.2 (residual bound). Let Y ∈ A (T ) satisfy Φ̃′(Y ) = 0 in A (T ), then

‖Φ′(Y )‖∗ ≤ max
k=1,...,K

ηr,k + max
k=1,...,K

ηs,k =: η(Y ),

where

ηr,k = max
i=tk−1+1,...,tk

∣∣∣∣∣
i−1∑

j=tk−1+1

Φ′
j(Y ) −

tk−1∑
j=i

Φ′
j(Y )

∣∣∣∣∣, (54)

ηs,k = h2
k max

(
|f |w2,∞

ε ((tk−1,tk)), 2|f |w1,∞
ε ((tk−1+1,tk)) + 2|f |w1,∞

ε ((tk−1,tk−1))

)
. (55)

In particular, if tk − tk−1 = 1 then ηr,k + ηs,k = 0.

A proof of Theorem 5.2 as well as a detailed discussion concerning the concrete evaluation of the residual
terms and their interpretation and comparison with residual estimates in continuum mechanics is given in
Section 5.1.

Theorem 5.3 (stability estimate).

(a) For each y ∈ R
N+1 with z′ = mini=1,...,N y′

i, we have

min
u∈A0

|u|
w1,∞

ε
=1

max
v∈A0

|v|
w1,1

ε
=1

Φ′′(y; u, v) ≥ 1
2

(
min

i=1,...,N
J ′′(y′

i) − ρ∞(z′)
)

, (56)

where ρ∞(z′) =
∞∑

r=2

r2 max
z≥rz′

|J ′′(z)|. (57)

(b) If, in addition, y′
ξ ≥ zc, then

min
u∈A0

|u|
w1,∞

ε,f

=1

max
v∈A0

|v|
w1,1

ε
=1

Φ′′(y; u, v) ≥ 1
2

(
min

i=1,...,N
i�=ξ

J ′′(y′
i) − ρ∞(z′)

)
. (58)

Proof. For z′ ≥ zt/2, this result follows immediately from Theorem 3.1 (a) and from Theorem 4.1 (a). In the
second case, note that y′

ξ ≥ zc and hence the term ρ2,f (zf , z1) vanishes. In general, the arguments can be
repeated verbatim, given the modified lower bound for the inf-sup constant. �

Remarks.
1. It is important to note that ρ∞ is in fact very simple to compute efficiently. If z′ is not very close to zero

then the calculation of ρ∞ only involves the computation of a relatively small finite sum.
2. While Theorems 5.1 and 5.2 are generic, it must be emphasized that Theorem 5.3 provides a good estimate

only if the deformation y has a generic but nevertheless very specific structure, namely elastic deformation with
possibly one single fracture. If mini=1,...,N y′

i < zt/2, then the bound is not sharp. On the other hand, if
maxi=1,...,N y′

i ≥ zt then µ(y) is zero or negative.
3. For example, although in the computations in Section 6 this was not necessary, it may in general be

advantageous not to estimate mini y′
i globally but only locally. This could be crucial when mini y′

i is significantly
smaller than maxi y′

i, for example, if maxi y′
i is close to zt but mini y′

i ≤ zm.
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5.1. Residual bounds

Let Y ∈ A (T ) be a QC solution, i.e., suppose that Φ̃′(Y ) = 0 in A (T ). To bound its residual ‖Φ′(Y )‖∗, we
use the usual Galerkin orthogonality argument to obtain

Φ′(Y ; u) = Φ′(Y ; u − Πu) + Φ′(Y ; Πu)

= Φ′(Y ; u − Πu) +
(
Φ′(Y ; Πu) − Φ̃′(Y ; Πu)

)
∀u ∈ A0, (59)

where Πu is the nodal interpolant defined in Section 2.2. The second term in (59) was already estimated in
Section 3.4. Using (69) and |Πu|w1,1

ε
≤ |u|w1,1

ε
, which can be verified by a straightforward computation, we

obtain
|Φ′(Y ; Πu) − Φ̃′(Y ; Πu)| ≤ max

k=1,...,K
ηs,k |u|w1,1

ε
, (60)

where ηs,k is defined by (55).
For the first term in (59), we note that

Φ′(Y ; v) =
N−1∑
i=1

Φ′
i(Y )vi, (61)

where
Φ′

i(Y ) = E′
i(Y ) − εfi ∀ i ∈ {0, . . . , N} \ T , (62)

and we take v = u − Πu. For each i ∈ {tk−1 + 1, . . . , tk − 1}, using the fact that vi vanishes for i = tk−1 and
for i = tk, we can write vi as

vi =
1
2

(
i∑

j=tk−1+1

εv′j −
tk∑

j=i+1

εv′j

)
.

Inserting this into (61) and rearranging the summation gives

Φ′(Y ; v) =
1
2

K∑
k=1

[
tk−1∑

i=tk−1+1

Φ′
i(Y )

i∑
j=tk−1+1

εv′j −
tk−1∑

i=tk−1+1

Φ′
i(Y )

tk∑
j=i+1

εv′j

]

=
1
2

K∑
k=1

[
tk−1∑

j=tk−1+1

εv′j

tk−1∑
i=j

Φ′
i(Y ) −

tk∑
j=tk−1+2

εv′j

j−1∑
i=tk−1+1

Φ′
i(Y )

]

=
1
2

K∑
k=1

[
tk∑

j=tk−1+1

εv′j

tk−1∑
i=j

Φ′
i(Y ) −

tk∑
j=tk−1+1

εv′j

j−1∑
i=tk−1+1

Φ′
i(Y )

]
.

Note that, in the last line, sums over empty sets (whenever the lower summation index is larger than the upper
summation index) may occur; each such empty sum is considered to be zero. We use this convention in order
to avoid complicated formulae. Upon setting

Rj =
1
2

[
tk−1∑
i=j

Φ′
i(Y ) −

j−1∑
i=tk−1+1

Φ′
i(Y )

]
for tk−1 < j < tk,

using the same summation convention as above, we obtain

Φ′(Y ; v) =
N∑

j=1

εv′jRj . (63)
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An application of Hölder’s inequality together with

|v|w1,1
ε ((tk−1,tk)) ≤ |u|w1,1

ε ((tk−1,tk)) + |Πu|w1,1
ε ((tk−1,tk)) ≤ 2|u|w1,1

ε ((tk−1,tk))

gives the bound

|Φ′(Y ; v)| ≤ 2
K∑

k=1

[
max

j=tk−1+1,...,tk

|Rj |
]
|u|w1,1

ε ((tk−1,tk))

≤ max
k=1,...,K

ηr,k |u|w1,1
ε

, (64)

where ηr,k is defined by (54). Combining (60) with (64) we obtain

|Φ′(Y ; u)| ≤
(

max
k=1,...,K

ηr,k + max
k=1,...,K

ηs,k

)
|u|w1,1

ε

which concludes the proof of Theorem 5.2.
Formula (54) is not necessarily straightforward to implement. We therefore briefly discuss some interesting

aspects of the residual estimate and an upper bound which reveals its structure and gives a form amenable
to implementation. To this end, let us first assume that only nearest and next-nearest neighbour interactions
occur, i.e., mini Y ′

i ≥ zc/3. In that case, for i ∈ {2, . . . , N − 2}, we can rewrite (62) as

Φ′
i(Y ) = J ′(Y ′

i−1 + Y ′
i ) + J ′(Y ′

i ) − J ′(Y ′
i+1) − J ′(Y ′

i+1 + Y ′
i+2) − εfi.

If i ∈ {tk−1 + 1, . . . , tk − 1}, then we always have J ′(Y ′
i ) − J ′(Y ′

i+1) = 0. For i ∈ {tk−1 + 2, . . . , tk − 2} we also
have

J ′(Y ′
i−1 + Y ′

i ) − J ′(Y ′
i+1 + Y ′

i+2) = J ′(2Y
′

k ) − J ′(2Y
′

k ) = 0.

Therefore, if tk − tk−1 ≥ 3, the auxiliary variables Rj can be estimated by

|Rj | ≤ 1
2
(hk − ε)‖f‖�∞ε ((tk−1+1,tk−1)) +

1
2

(∣∣J ′(2Y
′

k ) − J ′(Y
′

k + Y
′

k−1)
∣∣+ ∣∣J ′(2Y

′
k ) − J ′(Y

′
k+1 + Y

′
k )
∣∣). (65)

Similarly, if tk − tk−1 = 2, then

|Rj | ≤
1
2
(hk − ε)‖f‖�∞ε ((tk−1+1,tk−1)) +

1
2

∣∣J ′(Y
′

k+1 + Y
′

k ) − J ′(Y
′

k + Y
′

k−1)
∣∣. (66)

If tk − tk−1 = 1, then obviously ηr,k = 0.
The first term in (65) and (66) is the same as the one we would have obtained in the continuum theory,

except that the factor hk −ε would have been simply hk. The second term in (65) and (66) is a purely atomistic
effect and highlights the non-local interaction of the atoms. It represents a force at the interface between two
elements which has not been fully resolved by the QC approximation.

For the practical computation of the indicators ηr,k, the following proposition which is a generalization of
the above discussion is useful.

Proposition 5.4. Suppose that J(z) = 0 for z ≥ zc. If min(i − tk−1, tk − i) ≥ zc/Y
′

k , then E′
i(Y ) = 0. In

particular, we have

ηr,k ≤ (hk − ε)‖f‖�∞ε ((tk−1+1,tk−1)) +
∑

i∈{tk−1+1,...,tk−1}
min(i−tk−1 ,tk−i)<zc/Y ′

k

|E′
i(Y )|.
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Proof. Fix k ∈ {1, . . . , K}. If i ∈ {tk−1 + 1, . . . , tk − 1} then the derivative with respect to the penalty term
vanishes and therefore,

Φ′
i(Y ) =

i−1∑
j=0

J ′(ε−1(Yi − Yj)
)
−

N∑
j=i+1

J ′(ε−1(Yj − Yi)
)
− εfi.

Since Y is affine in the set {tk−1, . . . , tk}, we have Yi+j − Yi = Yi − Yi−j for j = 1, . . . , r where r = min(i −
tk−1, tk − i) and therefore

Φ′
i(Y ) =

i−r−1∑
j=0

J ′(ε−1(Yi − Yj)
)
−

N∑
j=i+r+1

J ′(ε−1(Yj − Yi)
)
− εfi.

For the remaining differences, we have ε−1|Yj − Yi| ≥ rY
′

k and hence J ′(ε−1|Yj − Yi|) = 0 if r ≥ zc/Y
′

k . �

6. Numerical examples

6.1. Benchmark problem

For our QC benchmark problem we compute a time-discrete quasistatic evolution, where the solution ranges
through a variety of different states. First, we determine a stress-free reference state ŷ by (approximately)
solving E′(ŷ) = 0 with a Dirichlet condition on only the left-hand end of the domain. The atomistic potential
is the Morse potential with α = 5.0 and cut-off radius zc = 2.7. We define the applied body-force by

fi =
{

0.03, if i ≥ ξ
−0.03, if i < ξ.

This non-smooth body-force creates a stress intensifier between the two atoms at sites ξ − 1 and ξ which is
where we should physically expect fracture to occur. The constant 0.03 is quite arbitrary. It is sufficiently small
so that the body-force does not dominate the equation and also sufficiently large so that the QC method should
be able to find the correct fracture.

We then successively solve for y(t) satisfying E′(y(t)) = f subject to the boundary conditions y0(t) = 0 and
yN (t) = ŷN + t, for ten quasistatic steps:

t = 0.0, 0.025, 0.05, 0.075, 0.1, 0.115, 0.1215, 0.1245, 0.1257, 0.15. (67)

The initial condition for the numerical optimization method, at each step, is obtained by adding an affine
function to the previously obtained critical point and so that it satisfies the new boundary condition.

6.2. Adaptive algorithm

We shall publish the details of the adaptive algorithm which we have used in the computation of the above
benchmark problem elsewhere and will confine ourselves here to a brief outline.

It was recently noted by Higham [11] that there is a close connection between trust region methods and
adaptive time-stepping for a discretized gradient flow evolution. In a quite similar spirit, we used an adaptive
proximal point algorithm (PPA) (see [13] for an overview), which is essentially a time-discretized version of a
gradient flow for E to compute critical points. The novelty of our algorithm is that, motivated by the analysis
in [19], we chose the | · |w1,2

ε
-semi-norm as the gradient flow norm. Given an initial condition Y (0), for the �th

step of the optimization method, we find a critical point (local minimizer) of

V �→ γ�

2
|V − Y (�−1)|2

w1,2
ε

+ E(V ) − 〈f, V 〉T (�)
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in A (T (�)). The penalty parameter γ�, which corresponds to the inverse of the time-step, and the QC mesh T (�)

at the �th step are chosen adaptively. In particular, it is possible in our formulation that γ� = 0 and thus the
algorithm reduces to Newton’s method.

Before we can demonstrate how we compute the a posteriori existence condition (cf. Thm. 5.1 and the
resulting error estimate, we require a final result that allows us to compute balls with respect to the w1,∞

ε,f -norm,
given by Bf (Y, R) = {y ∈ A : |y − Y |w1,∞

ε,f
≤ R}. In particular, since we can only compute the inf-sup constant

with respect to | · |w1,∞
ε,f

if y′
ξ ≥ zc, we need to determine under what conditions all elements y ∈ Bf (Y, R) satisfy

this property.

Proposition 6.1. Let Y ∈ A with Y ′
ξ > zc; then,

y′
ξ ≥ zc ∀y ∈ Bf

(
Y, ε(Y ′

ξ − zc)
)
∩ A .

Proof. For y ∈ Bf (Y, R) we have

y′
ξ = ε−1

⎛
⎝yD

N −
∑
i	=ξ

εy′
i

⎞
⎠ = ε−1

⎛
⎝yD

N −
∑
i	=ξ

εY ′
i +
∑
i	=ξ

(Y ′
i − y′

i)

⎞
⎠ ≥ Y ′

ξ − NR.

Hence, for R ≤ ε(Y ′
ξ − zc) the required property holds. �

We use the following procedure to determine which norm we use for the a posteriori existence condition and
the error estimate. Let Y be a QC solution. We compute the residual bound η = η(Y ), using Theorem 5.2 and
Proposition 5.4. This value is passed to a search algorithm which tries to find optimal radii (if they exist) R
and Rf such that η/µ ≤ R and η/µf ≤ Rf where µ and µf are the respective bounds on the inf-sup constants
in B(Y, R) and Bf (Y, Rf ) with respect to the norms | · |w1,∞

ε
and | · |w1,∞

ε,f
. In the following description of the

search algorithm, we use the symbols µ(f), R(f), etc., to indicate that each step is performed for both µ, R,
etc., as well as for µf , Rf , and so forth.

1. We compute µ(f)(Y ) using Theorem 5.3, and possibly Proposition 6.1 for determining the set Bf (Y, Rf ).
2. We set R0

(f) = η(Y )µ(f)(Y ) and choose q ∈ (0, 1).

3. For Rj
(f) = qjR0, j = 0, 1, 2, . . . , J , we use Theorem 5.3 and possibly Proposition 6.1 again to compute

an upper bound µj
(f) on the inf-sup constant in B(f)(Y, Rj

(f)).

4. If there exists j such that η(Y )µj
(f) ≤ Rj

(f) we find j maximizing µj
(f), we set R(f) = Rj

(f) and µ(f) = µj
(f).

The following situations can now occur.
1. If no radius Rf was found such that η ≤ µfRf , then we use the | · |w1,∞

ε
-norm in the analysis:

1.1 There exists R such that η/µ ≤ R: Find R for which this holds and for which µ is maximal.
Use η/µ ≤ TOL as a refinement criterion. If η/µ ≤ TOL accept the solution. Otherwise, use the
refinement criterion to obtain a new QC mesh and repeat the step.

1.2 There exists no R for which η/µ ≤ R: Find R such that µR is maximal and use η ≤ µR as a
refinement criterion to obtain a new mesh with which to repeat the optimization step.

1.3 There exists no R > 0 such that µ > 0. In this case it is not clear what to do. The algorithm
should terminate if this occurs.

2. If there exists a radius Rf ≤ Y ′
ξ − zc such that η ≤ µfRf , then we use the | · |w1,∞

ε,f
-norm in the analysis:

Take η/µf ≤ TOL as a refinement criterion. If it is satisfied, accept the QC solution. Otherwise, we
compute a new mesh and repeat the optimization step.

As mentioned above, this procedure is in fact done at each step of the proximal point algorithm. The required
error estimates are easily generalized to the time-step functional. For a more detailed description, see [20].
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Figure 2. The (piecewise constant) gradients of QC solutions in several steps of the quasistatic
evolution described in Section 6.1 computed with N = 105 atoms and with TOL = 10−3. Note
the different vertical scales in the respective sub-plots.

6.3. Results

Using the adaptive optimization algorithm, which was briefly outlined in the previous section, for a given
number of atoms N ∈ {103, 104, 105, 106} we computed QC solutions Y (t) of the quasistatic benchmark problem
described in Section 6.1. For each computed QC solution Y (t), we guarantee the existence of an exact solution
y(t) of the atomistic model, such that |y(t) − Y (t)|w1,∞

ε
≤ TOL where TOL ∈ {10−2, 10−3}. Steps 4, 6, 8 and 9

using N = 105 and TOL = 10−3 are shown in Figure 2. We can see the local refinement to resolve the singularity
in the center caused by the ‘discontinuity’ in the forcing term and the refinement due to the surface forces. In
step 8 we can clearly see the global refinement which is required to resolve the solution to a sufficient degree
near the bifurcation point. These effects become better visible in Figure 3 where we plot the number of degrees
of freedom required to meet the a posteriori existence condition and the error tolerance, showing that both are
roughly independent of N .

For N = 103 and TOL = 2k × 10−3, k = 3, 2, 1, 0,−1, we plot the efficiency index, i.e., the ratio between
estimated and exact error in Figure 4. We note, in particular, that even as the solution approaches the bifurcation
point (when the deformation gradient approaches the turning point zt of J) in step 8 of the quasistatic evolution,
the efficiency remains bounded.
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Figure 3. Number of degrees of freedom required to meet the a posteriori existence criterion
and the error tolerance TOL ∈ {10−2, 10−3} with N ∈ {103, 104, 105, 106}. There are eight
curves in this figure, some of which are indistinguishable; four computed with TOL = 10−2 (full)
and four computed with TOL = 10−3 (dashed).
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Figure 4. Efficiency index (ratio between estimated and true error) for the error estimate
for each quasistatic step of the benchmark problem described in Section 6.1. All tests are
performed with N = 103.

7. Concluding remarks

We have presented a fairly complete analysis of the quasicontinuum method in one dimension. Using tech-
niques based on the Inverse Function Theorem we were able to rigorously prove the existence of QC solutions
near exact atomistic solutions, as well as the existence of exact atomistic solutions near QC solutions, and to
provide quasi-optimal error estimates. All of our estimates were independent of the atomic spacing and the
number of atoms in the body.
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While the use of the Inverse Function Theorem might suggest that our analysis only applies to the linearly
elastic regime, we would like to stress again that this is not the case. Since we linearize around arbitrary stable
solutions, the results apply to genuinely nonlinear situations.

However, the completeness of our results was primarily due to the one-dimensional setting of this work.
While the fundamental approach to the error analysis for the QC method (based on a fixed point argument) is
quite attractive, it is not entirely clear whether our results can be generalized to higher dimensions. We note,
for example, that it is not possible to prove the inf-sup condition (12) in a two- or three-dimensional setting.
We expect (based on BMO-estimates in the work of Dolzmann [7]) that the corresponding inf-sup constant
would tend to zero like | log(ε)|−1 as ε approaches zero. It remains to be seen whether this is sufficient for
applications. Other alternatives are to use regularity with respect to even stronger norms, such as discrete C1,α,
or W2,p-norms. In this case, however, much stronger bounds on the residual would be necessary and this would,
most likely, require a modification of the QC method in order to obtain higher order convergence.

A. Appendix A: Auxiliary results

In this appendix, we collect some useful results that are required throughout this paper, and which are closely
related to, and whose formulation and proof do not differ much from, their corresponding continuum versions.
The important fact to note is that all bounds are uniform in ε.

Lemma A.1. Let (gi)L
i=1 ∈ R

L and
∑L

i=1 gi = 0; then

|gi| ≤ L−1
L∑

k=2

|gk − gk−1|φi,k, i = 1, . . . , L, (68)

where φi,k = k − 1 for k = 2, . . . , i and φi,k = L − k + 1 for k = i + 1, . . . , L.

Proof. We set ε = 1 and write g′k = gk − gk−1 throughout this proof. Let i ∈ {1, . . . , L}; then

|gi| =
∣∣∣gi − L−1

L∑
j=1

gj

∣∣∣ = L−1
∣∣∣ L∑

j=1

(gi − gj)
∣∣∣

≤ L−1
i−1∑
j=1

|gi − gj | + L−1
L∑

j=i+1

|gi − gj|

≤ L−1
i−1∑
j=1

i∑
k=j+1

|g′k| + L−1
L∑

j=i+1

j∑
k=i+1

|g′k|

= L−1
i∑

k=2

|g′k|
k−1∑
j=1

1 + L−1
L∑

k=i+1

|g′k|
L∑

j=k

1

= L−1
i∑

k=2

|g′k|(k − 1) + L−1
L∑

k=i+1

|g′k|(L − k + 1). �

Lemma A.2 (discrete Friedrichs and Poincaré inequalities). Suppose that L ≥ 1, and that (fi)L
i=0 ∈ R

L+1 and
(gi)L

i=1 ∈ R
L such that f0 = fL = 0 and

∑L
i=1 gi = 0. For p ∈ {1,∞} we have

‖f‖�p
ε((0,L)) ≤ 1

2
(εL)|f |w1,p

ε ((0,L)), and (69)

‖g‖�p
ε((1,L)) ≤ 1

2
(εL)|g|w1,p

ε ((1,L)). (70)
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Proof. First, we note that all occurrences of ε can be removed from the results by simple cancellation. Fur-
thermore, the inequalities are trivial if L = 1. Thus, we assume without loss of generality that ε = 1 and
L ≥ 2.

We begin with the case p = 1. To obtain (69), consider

L∑
i=0

|fi| =
L−1∑
i=1

|fi| =
1
2

L−1∑
i=1

⎡
⎣∣∣∣ i∑

j=1

(fj − fj−1)
∣∣∣+ ∣∣∣ L∑

j=i+1

(fj − fj−1)
∣∣∣
⎤
⎦

≤ 1
2

L−1∑
i=1

L∑
j=1

|fj − fj−1| = L
1
2

(
1 − 1

L

) L∑
j=1

|fj − fj−1|.

To obtain (70), we sum inequality (68) over i = 1, . . . , L to obtain

L∑
i=1

|gi| ≤ L−1
L∑

i=1

i∑
k=2

|g′k|(k − 1) + L−1
L∑

i=1

L∑
k=i+1

|g′k|(L − k + 1)

= L−1
L∑

k=2

|g′k|
L∑

i=k

(k − 1) + L−1
L∑

k=2

|g′k|
k−1∑
i=1

(L − k + 1)

=
2
L

L∑
k=2

|g′k|(k − 1)(L − k + 1)

≤ 2L max
k=2,...,L

(k − 1
L

)(
1 − k − 1

L

) L∑
k=2

|g′k| ≤
L

2

L∑
k=2

|g′k|.

For p = ∞, suppose that |fi| = maxj=0,...,L |fj|; then

max
j=0,...,L

|fj | = |fi| ≤
i∑

j=1

|fj − fj−1| ≤ i max
j=1,...,L

|fj − fj−1|.

Similarly, we also have

max
j=0,...,L

|fj | = |fi| ≤
L∑

j=i+1

|fj − fj−1| ≤ (L − i) max
j=1,...,L

|fj − fj−1|,

and therefore,

max
j=0,...,L

|fj| ≤ min(i, L − i) max
j=1,...,L

|fj − fj−1|,

which gives (69) with p = ∞.
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Using Lemma A.1, we have, for each i = 1, . . . , L,

|gi| ≤ L−1
i∑

j=2

|g′j |(j − 1) + L−1
∑

j=i+1

|g′j|(L − j + 1)

≤ 1
L

max
j=2,...,L

|g′j |
1
2
[
i(i − 1) + (L − i)(L − i + 1)

]
=

1
2L

max
j=2,...,L

|g′j|
[
L2 + L − 2Li + 2i2 − 2i

]
=

1
2L

max
j=2,...,L

|g′j|
[
L(L − 1) − 2(L − i)(i − 1)

]
≤ L
(1

2
− 1

2L

)
max

j=2,...,L
|g′j |. �

Note that (69) and (70) are of course valid for any p with constants independent of ε. Furthermore the optimal
Friedrichs constants Cp,L and Poincaré constants C̄p,L in the cases p ∈ {1, 2,∞} satisfy

C1,L = C̄∞,L =
1
2
− 1

2L
, C̄1,L = C∞,L =

{
1/2, if L is even,
(1/2) − (1/2L), if L is odd,

and

1
π

= lim
L→∞

C2,L ≤ C2,L = C̄2,L =
1

2L sin(π/(2L))
≤ C2,2 = 8−1/2, C2,1 = C̄2,1 = 0.

In one dimension we also have the following embedding inequality.

Lemma A.3. Let (fi)L
i=0 ∈ R

L+1 with f0 = fL = 0. Then,

‖f‖�∞ε ((0,L)) ≤
1
2
|f |w1,1

ε ((0,L)).

Proof. For each i ∈ {1, . . . , N − 1}, we have

|fi| ≤
i∑

j=1

ε|f ′
j | as well as |fi| ≤

N∑
j=i+1

ε|f ′
j|.

Adding the two inequalities gives the desired result. �

Finally, we combine the estimates of Lemma A.2 to obtain the following interpolation error estimates.

Theorem A.4 (bounds on the interpolation error). Suppose that (fi)L
i=0 ∈ R

L+1 and let

Fi = f0 +
i

L
(fL − f0)

be the affine interpolant of f . Then, for p ∈ {1,∞},

|f − F |w1,p
ε ((0,L)) ≤ 1

2
(εL)|f |w2,p

ε ((0,L)), and (71)

‖f − F‖�p
ε((0,L)) ≤ 1

4
(εL)2|f |w2,p

ε ((0,L)). (72)
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Figure 5. Piecewise constant deformation gradient of global minima of the atomistic en-
ergy (1), where J is the Morse potential (3) with α = 1.0.

Proof. First note that the grid function f̃ = f − F satisfies f̃0 = f̃L = 0 and therefore
∑L

i=1 f̃ ′
i = 0. Inequal-

ity (71) therefore follows directly from (70).
The estimate (72) can be obtained by applying first (69) and then (70),

‖f − F‖�p
ε((0,L)) ≤

1
2
(εL)‖(f − F )′‖�p

ε((1,L)) ≤
1
4
(εL)2‖f ′′‖�p

ε((1,L−1)) =
1
4
(εL)2|f |w2,p

ε ((0,L)). �

B. Appendix B: Computation of coercivity regions

In this short appendix, we confirm that the hypotheses made on the interaction potential can indeed be
satisfied. With the use of simple Matlab scripts it is straightforward to compute possible values for z1, z2

and, in the fracture case, for zf . Only the elastic case is included here since the additional requirements of the
fracture case are very easily met given the fast decay of most interaction potentials.

We choose the constants in the Lennard–Jones potential so that its minimum lies at z = 1,

J(z) = z−12 − 2z−6.

Hence, we have zm = 1 and zt = (13/7)1/6 ≈ 1.11. If we choose z1 = 0.88 and z2 = 1.06, we obtain
ρ2(z1, z2) ≈ 12.5. Furthermore, we have ρ1(zm) ≈ 0.2 which guarantees the existence of a reference state for
sufficiently small boundary displacements.

The Morse potential is slightly less forthcoming in this respect. First, we note that zm = 1 and zt =
1 + α−1ln(2). If we choose α = 1 in (3) we obtain ρ2(zm, zm) ≈ −3.8 and we have therefore no hope of
constructing a critical point with the technique we have used. This does not mean that E has no critical point
in this case. In fact, the mere existence of a global energy minimum can be easily deduced by a compactness
argument. However, numerical experiments shown in Figure 5 indicate that those minimizers are extremely
unstable and bear no resemblance to the observed steady states of solids. Furthermore, there seems to be no
convergence of those minimizers to a continuum as N → ∞.

If we make the well steeper, however, we can achieve coercivity. For example, for α = 5, which we have used
in our numerical example, we can choose z1 = 0.9 and z2 = 1.05 to obtain ρ2(z1, z2) ≈ 17.4 and ρ1(zm) ≈ 0.15.
The condition 2ρ1(zm) ≤ Rρ2(zm − R, zm + R) becomes 2 × 0.15 ≤ 0.05 × 17.4 which is clearly satisfied.

Finally, we should note that, the steeper the basin of convexity around zm (the larger α in the Morse
potential), the better the bounds become.
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