
The Library
The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium
Tools
Cloke, B., Huhtinen, K., Fusi, L., Kajihara, T., Yliheikkila, M., Ho, K.-K., Teklenburg, G., Lavery, S., Jones, M. C., Trew, G., Kim, J. J., Lam, Eric W.-F., Cartwright, J. E., Poutanen, M. and Brosens, Jan J. (2008) The androgen and progesterone receptors regulate distinct gene networks and cellular functions in decidualizing endometrium. Endocrinology, Vol.149 (No.9). pp. 4462-4474. doi:10.1210/en.2008-0356 ISSN 0013-7227.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1210/en.2008-0356
Abstract
Progesterone is indispensable for differentiation of human endometrial stromal cells (HESCs) into decidual cells, a process that critically controls embryo implantation. We now show an important role for androgen receptor (AR) signaling in this differentiation process. Decreased posttranslational modification of the AR by small ubiquitin-like modifier (SUMO)-1 in decidualizing cells accounted for increased responsiveness to androgen. By combining small interfering RNA technology with genome-wide expression profiling, we found that AR and progesterone receptor (PR) regulate the expression of distinct decidual gene networks. Ingenuity pathway analysis implicated a preponderance of AR-induced genes in cytoskeletal organization and cell motility, whereas analysis of AR-repressed genes suggested involvement in cell cycle regulation. Functionally, AR depletion prevented differentiation-dependent stress fiber formation and promoted motility and proliferation of decidualizing cells. In comparison, PR depletion perturbed the expression of many more genes, underscoring the importance of this nuclear receptor in diverse cellular functions. However, several PR-dependent genes encode for signaling intermediates, and knockdown of PR, but not AR, compromised activation of WNT/β-catenin, TGFβ/SMAD, and signal transducer and activator of transcription (STAT) pathways in decidualizing cells. Thus, the nonredundant function of the AR in decidualizing HESCs, centered on cytoskeletal organization and cell cycle regulation, implies an important role for androgens in modulating fetal-maternal interactions. Moreover, we show that PR regulates HESC differentiation, at least in part, by reprogramming growth factor and cytokine signal transduction.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Reproductive Health ( - until July 2016) Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School |
||||
Journal or Publication Title: | Endocrinology | ||||
Publisher: | The Endocrine Society | ||||
ISSN: | 0013-7227 | ||||
Official Date: | September 2008 | ||||
Dates: |
|
||||
Volume: | Vol.149 | ||||
Number: | No.9 | ||||
Page Range: | pp. 4462-4474 | ||||
DOI: | 10.1210/en.2008-0356 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |