
The Library
Flips in graphs
Tools
Bohman, Tom, Dudek, Andrzej, Frieze, Alan and Pikhurko, Oleg (2010) Flips in graphs. SIAM Journal on Discrete Mathematics, Vol.24 (No.3). pp. 1046-1055. doi:10.1137/090752237 ISSN 0895-4801.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1137/090752237
Abstract
We study a problem motivated by a question related to quantum error-correcting codes. Combinatorially, it involves the graph parameter $f(G)=\min\{|A|+|\{x\in V\setminus A:d_A(x)$ is $\text{odd}\}|:A\neq\emptyset\}$, where $V$ is the vertex set of $G$ and $d_A(x)$ is the number of neighbors of $x$ in $A$. We give asymptotically tight estimates of $f$ for the random graph $G_{n,p}$ when $p$ is constant. Also, if $f(n)=\max\{f(G):\,|V(G)|=n\}$, then we show that $f(n)\leq(0.382+o(1))n$.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Journal or Publication Title: | SIAM Journal on Discrete Mathematics | ||||
Publisher: | Society for Industrial and Applied Mathematics | ||||
ISSN: | 0895-4801 | ||||
Official Date: | 2010 | ||||
Dates: |
|
||||
Volume: | Vol.24 | ||||
Number: | No.3 | ||||
Page Range: | pp. 1046-1055 | ||||
DOI: | 10.1137/090752237 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |