References: |
Albert, J. and S. Chib (1993) Bayes inference via Gibbs sampling of autoregressive time series subject to Markov mean and variance shifts. Journal of Business & Economic Statistics 11(1), 1–15. Albert, P. S. (1991) A two-state Markov mixture model for a time series of epileptic seizure counts. Biometrics 47(4), 1371–81. Andrieu, C., A. Doucet and R. Holenstein (2010) Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 72(3), 269–342. Ashburner, J., K. Friston, A. P. Holmes and J. B. Poline (1999) Statistical Parametric Mapping (SPM2 ed.). Wellcome Department of Cognitive Neurology Available at: http://www.fil.ion.ucl.ac.uk/spm Aston, J. A. D. and D. E. K. Martin (2007) Distributions associated with general runs and patterns in hidden Markov models. The Annals of Applied Statistics 1(2), 585–611. Aston, J. A. D., J. Y. Peng and D. E. K. Martin (2011) Implied distributions in multiple change point problems. Statistics and Computing (in press). Baum, L. E., T. Petrie, G. Soules and N. Weiss (1970) A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41(1), 164–71. Cappe´ , O., E. Moulines and T. Ryde´n (2005) Inference in Hidden Markov Models. Springer Series in Statistics. Carpenter, J., P. Clifford and P. Fearnhead (1999) An improved particle filter for non-linear problems. IEE Proceedings on Radar Sonar and Navigation 146(1). 2–7. Chen, J. and A. K. Gupta (2000) Parametric Statistical Change Point Analysis. Birkhauser. Chen, R. and J. Liu (1996) Predictive updating methods with application to Bayesian classification. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 58, 397–415. Chib, S. (1998) Estimation and comparison of multiple change-point models. Journal of Econometrics 86, 221–41. Chopin, N. (2007) Inference and model choice for sequentially ordered hidden Markov models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69(2), 269–284. Chopin, N. and F. Pelgrin (2004) Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation. Journal of Econometrics 123(2), 327–44. Davis, R. A., T. C. M. Lee and G. A. Rodriguez-Yam (2006) Structural break estimation for nonstationary time series models. Journal of the American Statistical Association 101, 223–39. Del Moral, P., A. Doucet and A. Jasra (2006) Sequential Monte Carlo samplers. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(3), 411–36. Del Moral, P., A. Doucet and A. Jasra (2011) On adaptive resampling procedures for sequential Monte Carlo methods. Bernoulli. To appear. Douc, R. and O. Cappe´ (2005) Comparison of resampling schemes for particle filtering, Image and Signal Processing and Analysis, 2005. ISPA 2005. Proceedings of the 4th International Symposium. pp. 64–69. Doucet, A. and A. M. Johansen (2011) A tutorial on particle filtering and smoothing: fifteen years later. In The Oxford Handbook of Nonlinear Filtering (eds D. Crisan and B. Rozovskiiˇ). Oxford University Press. Durbin, R., S. Eddy, A. Krogh and G. Mitchinson (1998) Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press. Eckley, I., P. Fearnhead and R. Killick (2011) Analysis of changepoint models. In Bayesian Time Series Model (eds D. Barber, A. Cemgil, and S. Chiappa). Cambridge University Press, pp. 215–38. Fearnhead, P. (2006) Exact and efficient Bayesian inference for multiple changepoint problems. Statistical Computing 16, 203–13. Fearnhead, P. and Z. Liu (2007) On-line inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 69, 589–605. Fu, J. C. and M. V. Koutras (1994) Distribution theory of runs: A Markov chain approach. Journal of the American Statistical Association 89(427), 1050–8. Fu, J. C. and W. Y. W. Lou (2003) Distribution Theory of Runs and Patterns and its Applications: A Finite Markov Chain Imbedding Approach. World Scientific. Gilks, W. R., S. Richardson and D. J. Spiegelhalter (Eds) (1996) Markov Chain Monte Carlo In Practice (first ed.). Chapman & Hall. Gordon N. J., D. J. Salmond and A. F. M. Smith (1993) Novel approach to nonlinear/non-Gaussian Bayesian state estimation. Radar and Signal Processing IEEE Proceedings F 140(2), 107–13. Hamilton, J. D. (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57(2), 357–84. Huerta, G. and M. West (1999) Priors and component structures in autoregressive time series models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 61(4), 881–99. Kong, A., J. S. Liu and W. H. Wong (1994) Sequential imputations and Bayesian missing data problems. Journal of the American 89(425), 278–88. Lehmann, E. L. and G. Casella (1998) Theory of Point Estimation (Second ed.) Springer. Lindquist, M. (2008) The statistical analysis of fMRI data. Statistical Science 23, 439–64. Lindquist, M. A., C. Waugh and T. D. Wager (2007) Modeling state-related fMRI activity using change-point theory. NeuroImage 35(3), 1125–41. MacDonald, I. L. and W. Zucchini (1997) Monographs on Statistics and Applied Probability 70: Hidden Markov and Other Models for Discrete-valued Time Series. Chapman & Hall/CRC. Neal, R. (2001) Annealed importance sampling. Statistics and Computing 11(2), 125–39. Ogawa, S., T. M. Lee, A. R. Kay and D. W. Tank (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceeding of the National Academy of Science USA 87(24), 9868–72. Page, E. S. (1954) Continuous inspection schemes. Biometrika 41, 100–15. Peng, J.-Y. (2008) Pattern Statistics in Time Series Analysis. Ph.D. thesis, Department of Computer Science and Information Engineering College of Electrical Engineering and Computer Science, National Taiwan University. Peng, J.-Y., J. A. D. Aston and C.-Y. Liou (2011) Modeling time series and sequences using Markov chain embedded finite automata. International Journal of Innovative Computing Information and Control 7, 407–31. Rabiner, L. (1989) A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–86. Roberts, G., A. Gelman and W. Gilks (1997) Weak convergence and optimal scaling of random walk Metropolis algorithms. The Annals of Applied Probability 7(1), 110–20. Robinson, L. F., T. D. Wager and M. A. Lindquist (2010) Change point estimation in multi-subject fMRI studies. NeuroImage 49, 1581–92. Scott, S. (2002) Bayesian methods for hidden Markov models: Recursive computing in the 21st century. Journal of the American Statistical Association 97(457), 337–51. Stephens, D. A. (1994) Bayesian retrospective multiple-changepoint identification. Journal of the Royal Statistical Society: Series C (Applied Statistics) 43, 159–578. Viterbi, A. (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. Information Theory, IEEE Transactions 13(2), 260–9. Whiteley, N., C. Andrieu and A. Doucet (2009) Particle MCMC for multiple changepoint models. Research report, University of Bristol (09,11). Worsley, K. J., C. Liao, J. A. D. Aston, V. Petre, G. Duncan and A. C. Evans (2002) A general statistical analysis for fMRI data. Neuroimage 15(1), 1–15. Yao, Y.-C. (1988) Estimating the number of change-points via Schwarz’ criterion. Statistics and Probabilitiy Letters 6, 181–9. Yu, S.-Z. (2010) Hidden semi-Markov models. Artificial Intelligence 174(2), 215–43. |