Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Analysis of quantum coherence in bismuth-doped silicon : a system of strongly coupled spin qubits

Tools
- Tools
+ Tools

Mohammady, M. H., Morley, Gavin, Nazir, A. and Monteiro, T. S. (2012) Analysis of quantum coherence in bismuth-doped silicon : a system of strongly coupled spin qubits. Physical Review B (Condensed Matter and Materials Physics), Vol.85 (No.9). 094404. doi:10.1103/PhysRevB.85.094404 ISSN 1098-0121.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1103/PhysRevB.85.094404

Request Changes to record.

Abstract

There is a growing interest in bismuth-doped silicon (Si:Bi) as an alternative to the well-studied proposals for silicon-based quantum information processing (QIP) using phosphorus-doped silicon (Si:P). We focus here on the implications of its anomalously strong hyperfine coupling. In particular, we analyze in detail the regime where recent pulsed magnetic resonance experiments have demonstrated the potential for orders of magnitude speedup in quantum gates by exploiting transitions that are electron paramagnetic resonance (EPR) forbidden at high fields. We also present calculations using a phenomenological Markovian master equation, which models the decoherence of the electron spin due to Gaussian temporal magnetic field perturbations. The model quantifies the advantages of certain "optimal working points" identified as the df/dB=0 regions, where f is the transition frequency, which come in the form of frequency minima and maxima. We show that at such regions, dephasing due to the interaction of the electron spin with a fluctuating magnetic field in the z direction (usually adiabatic) is completely removed. © 2012 American Physical Society.

Item Type: Journal Article
Subjects: Q Science > QC Physics
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Physical Review B (Condensed Matter and Materials Physics)
Publisher: American Physical Society
ISSN: 1098-0121
Official Date: 5 March 2012
Dates:
DateEvent
5 March 2012Published
Volume: Vol.85
Number: No.9
Page Range: 094404
DOI: 10.1103/PhysRevB.85.094404
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us