Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Précis of Bayesian rationality : the probabilistic approach to human reasoning

Tools
- Tools
+ Tools

Oaksford, M. (Mike) and Chater, Nick (2009) Précis of Bayesian rationality : the probabilistic approach to human reasoning. Behavioral and Brain Sciences, Vol.32 (No.1). pp. 69-84. doi:10.1017/S0140525X09000284

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1017/S0140525X09000284

Request Changes to record.

Abstract

According to Aristotle, humans are the rational animal. The borderline between rationality and irrationality is fundamental to many aspects of human life including the law, mental health, and language interpretation. But what is it to be rational? One answer, deeply embedded in the Western intellectual tradition since ancient Greece, is that rationality concerns reasoning according to the rules of logic – the formal theory that specifies the inferential connections that hold with certainty between propositions. Piaget viewed logical reasoning as defining the end-point of cognitive development; and contemporary psychology of reasoning has focussed on comparing human reasoning against logical standards.
Bayesian Rationality argues that rationality is defined instead by the ability to reason about uncertainty. Although people are typically poor at numerical reasoning about probability, human thought is sensitive to subtle patterns of qualitative Bayesian, probabilistic reasoning. In Chapters 1–4 of Bayesian Rationality (Oaksford & Chater 2007), the case is made that cognition in general, and human everyday reasoning in particular, is best viewed as solving probabilistic, rather than logical, inference problems. In Chapters 5–7 the psychology of “deductive” reasoning is tackled head-on: It is argued that purportedly “logical” reasoning problems, revealing apparently irrational behaviour, are better understood from a probabilistic point of view. Data from conditional reasoning, Wason's selection task, and syllogistic inference are captured by recasting these problems probabilistically. The probabilistic approach makes a variety of novel predictions which have been experimentally confirmed. The book considers the implications of this work, and the wider “probabilistic turn” in cognitive science and artificial intelligence, for understanding human rationality.

Item Type: Journal Article
Subjects: H Social Sciences > H Social Sciences (General)
Divisions: Faculty of Social Sciences > Warwick Business School > Behavioural Science
Faculty of Social Sciences > Warwick Business School
Journal or Publication Title: Behavioral and Brain Sciences
Publisher: Cambridge University Press
ISSN: 0140-525X
Official Date: February 2009
Dates:
DateEvent
February 2009Published
Volume: Vol.32
Number: No.1
Number of Pages: 16
Page Range: pp. 69-84
DOI: 10.1017/S0140525X09000284
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us