The Library
Lattice permutations and PoissonDirichlet distribution of cycle lengths
Tools
Grosskinsky, Stefan, Lovisolo, Alexander A. and Ueltschi, Daniel, 1969. (2012) Lattice permutations and PoissonDirichlet distribution of cycle lengths. Journal of Statistical Physics, Vol.146 (No.6). pp. 11051121. ISSN 00224715

PDF
WRAP_Grosskinsky_Lattice_1107.5215v2.pdf  Accepted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (780Kb) 
Official URL: http://dx.doi.org/10.1007/s1095501204509
Abstract
We study random spatial permutations on ℤ3 where each jump x↦π(x) is penalized by a factor e−T∥x−π(x)∥2 . The system is known to exhibit a phase transition for low enough T where macroscopic cycles appear. We observe that the lengths of such cycles are distributed according to PoissonDirichlet. This can be explained heuristically using a stochastic coagulationfragmentation process for long cycles, which is supported by numerical data.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Permutations 
Journal or Publication Title:  Journal of Statistical Physics 
Publisher:  Springer 
ISSN:  00224715 
Date:  March 2012 
Volume:  Vol.146 
Number:  No.6 
Page Range:  pp. 11051121 
Identification Number:  10.1007/s1095501204509 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
Funder:  Erasmus Mundus (Program), Engineering and Physical Sciences Research Council (EPSRC) 
Grant number:  EP/E501311/1 (EPSRC), EP/G056390/1 (EPSRC) 
References:  [1] M. Aizenman, Geometric analysis of '4 Fields and Ising models, Commun. Math. Phys. 86, 1–48 (1982) [2] M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states, Comm. Math. Phys. 164, 17–63 (1994) [3] D. Aldous, Deterministic and stochastic models for coalescence (aggregation and coagula tion): a review of the meanfield theory for probabilists, Bernoulli 5, 3–48 (1999) [4] R. Arratia, A. D. Barbour, S. Tavar´e, Logarithmic Combinatorial Structures: A Probabilistic Approach. EMS Monographs in Mathematics (2003) [5] N. Berestycki, Emergence of giant cycles and slowdown transition in random transpositions and kcycles, Electr. J. Probab. 16, 152–173 (2011) [6] N. Berestycki, R. Durrett Limiting behavior for the distance of a random walk, Electr. J. Probab. 13, 374–395 (2008) [7] J. Bertoin, Random Fragmentation and Coagulation Processes. Cambridge University Press (2006) [8] V. Betz, D. Ueltschi, Spatial random permutations and infinite cycles, Commun. Math. Phys. 285, 469–501 (2009) [9] V. Betz, D. Ueltschi, Spatial random permutations and PoissonDirichlet law of cycle lengths, Electr. J. Probab. 16, 11731192 (2011) [10] N. Crawford, D. Ioffe, Random current representation for transverse field Ising model, Commun. Math. Phys. 296, 447–474 (2010) [11] P. Diaconis, E. MayerWolf, O. Zeitouni, M. P. W. Zerner, The PoissonDirichlet law is the unique invariant distribution for uniform splitmerge transformations, Ann. Probab. 32, 915–938 (2004) [12] S. Feng, The PoissonDirichlet Distribution and Related Topics. Probability and its Applications, Springer (2010) [13] R. P. Feynman, Atomic theory of the � transition in Helium, Phys. Rev. 91, 1291–1301 (1953) [14] G. Grimmett, Spacetime percolation, In “In and out of equilibrium. 2”, Progr. Probab. 60, 305–320 (2008) [15] D. Gandolfo, J. Ruiz, D. Ueltschi, On a model of random cycles, J. Statist. Phys. 129, 663–676 (2007) [16] C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum Heisenberg models and their prob abilistic representations, Entropy and the Quantum II, Contemporary Mathematics 552, 177–224 (2011); arXiv:1104.0983 [17] J. Kerl, Shift in critical temperature for random spatial permutations with cycle weights, J. Statist. Phys. 140, 56–75 (2010) [18] J. F. C. Kingman, Random discrete distributions, J. Roy. Statist. Soc. B 37, 1–15 (1975) [19] J. F. C. Kingman, Mathematics of genetic diversity. CBMSNSF Regional Conference Series in Applied Mathematics, vol. 34, SIAM (1980) [20] J. Pitman, M. Yor, The twoparameter PoissonDirichlet distribution derived from a stable subordinator, Ann. Probab. 25, 855–900 (1997) [21] J. Pitman, PoissonDirichlet and GEM invariant distributions for splitandmerge trans formations of an interval partition, Combinatorics, Probability and Computing (2002), 11: 501514 [22] O. Schramm, Compositions of random transpositions, Israel J. Math. 147, 221–243 (2005) [23] L. A. Shepp, S. L. Lloyd, Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121, 340–357 (1966) [24] A. S¨ut˝o, Percolation transition in the Bose gas, J. Phys. A 26, 4689–4710 (1993) [25] B. T´oth, Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnet, Lett. Math. Phys. 28, 75 (1993) [26] N. V. Tsilevich, Stationary random partitions of a natural series, Teor. Veroyatnost. i Primenen. 44, 55–73 (1999) [27] D. Wilson, Mixing times of lozenge tiling and card shuffling Markov chains, Ann. Appl. Probab. 14, 274–325 (2004) 
URI:  http://wrap.warwick.ac.uk/id/eprint/44525 
Actions (login required)
View Item 