The Library
Driven Brownian coagulation of polymers
Tools
Krapivsky, Pavel L. and Connaughton, Colm. (2012) Driven Brownian coagulation of polymers. Journal of Chemical Physics, Vol.136 (No.20). Article:204901. ISSN 10897690

PDF
WRAP_Connaughton_driven_brownian_)203.3905.pdf  Submitted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (599Kb) 
Official URL: http://dx.doi.org/10.1063/1.4718833
Abstract
We present an analysis of the meanfield kinetics of Brownian coagulation of droplets and polymers driven by input of monomers which aims to characterize the long time behavior of the cluster size distribution as a function of the inverse fractal dimension, a, of the aggregates. We find that two types of long time behavior are possible. For 0 <= a < 1/2 the size distribution reaches a stationary state with a power law distribution of cluster sizes having exponent 3/2. The amplitude of this stationary state is determined exactly as a function of a. For 1/2 < a <= 1, the cluster size distribution never reaches a stationary state. Instead a bimodal distribution is formed in which a narrow population of small clusters near the monomer scale is separated by a gap (where the cluster size distribution is effectively zero) from a population of large clusters which continue to grow for all time by absorbing small clusters. The marginal case, a=1/2, is difficult to analyze definitively, but we argue that the cluster size distribution becomes stationary and there is a logarithmic correction to the algebraic tail.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics 
Divisions:  Faculty of Science > Centre for Complexity Science Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Brownian movements, Coagulation  Mathematical models 
Journal or Publication Title:  Journal of Chemical Physics 
Publisher:  American Institute of Physics 
ISSN:  10897690 
Date:  22 May 2012 
Volume:  Vol.136 
Number:  No.20 
Page Range:  Article:204901 
Identification Number:  10.1063/1.4718833 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
Funder:  Boston University, University of Warwick 
Related URLs:  
References:  [1] S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943). [2] P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, London, 1953). [3] R. Drake, in Topics in Current Aerosol Research, edited by G. Hidy and J. Brock (Pergamon, New York, 1972). [4] S. Friedlander, Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics, 2nd ed. (Oxford University Press, Oxford, 2000). [5] H. Pruppacher and J. Klett, Microphysics of Clouds and Precipitation, 2nd ed. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997). [6] D. J. Aldous, Bernoulli 5, 3 (1999). [7] F. Leyvraz, Phys. Reports 383, 95 (2003). [8] P. Krapivsky, S. Redner, and E. BenNaim, A Kinetic View of Statistical Physics (Cambridge University Press, Cambridge, 2010). [9] M. V. Smoluchowski, Z. Phys. Chem. 92, 129 (1917). [10] G. B. Field and W. C. Saslaw, Astrophys. J. 142, 568 (1965). [11] W. H. White, J. Colloid Interface Sci. 87, 204 (1982). [12] H. Hayakawa, J. Phys. A 20, L801 (1987). [13] U. Frisch, Turbulence: the legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, 1995). [14] G. Falkovich, K. Gaw¸edzki, and M. Vergassola, Rev. Mod. Phys. 73, 913 (2001). [15] V. Zakharov, V. Lvov, and G. Falkovich, Kolmogorov Spectra of Turbulence (SpringerVerlag, Berlin, 1992). [16] E. BenNaim and J. Machta, Phys. Rev. Lett. 94 (2005). [17] H. Takayasu, Phys. Rev. Lett. 63, 2563 (1989). [18] P. L. Krapivsky, J. F. F. Mendes, and S. Redner, Eur. Phys. J. B 4, 401 (1998); Phys. Rev. B 59, 15950 (1999). [19] C. Connaughton, R. Rajesh, and O. Zaboronski, Phys. Rev. E 69, 061114 (2004). [20] C. Connaughton, R. Rajesh, and O. Zaboronski, Phys. Rev. Lett. 94, 194503 (2005). [21] R. M. Ziff and G. Stell, J. Chem. Phys. 73, 3492 (1980). [22] R. C. Ball, C. Connaughton, T. H. M. Stein, and O. Zaboronski, Phys. Rev. E 84, 011111 (2011). [23] H. S. Wilf, generatingfunctionology (Academic Press, 1990). [24] S. V. Khare, N. C. Bartelt, and T. L. Einstein, Phys. Rev. Lett. 75, 2148 (1995). [25] Y. A. Kryukov and J. G. Amar, Phys. Rev. E 83, 041611 (2011). [26] More precisely, the factor (Ri +Rj)d−2 in Smoluchowski formula should be replaced by 1/ ln(Ri +Rj) in 2D; here we ignore this slowly varying logarithmic factor. [27] M. Rubinstein and R. H. Colby, Polymer Physics (Oxford University Press, 2003). [28] For the polymer in bad solvent, a = 1/3 and we recover the classical Brownian coagulation kernel (3). [29] M. Lee, Icarus 143, 74 (2000). [30] C. Connaughton, Physica D 238, 2282 (2009). [31] We are mostly interested in the steady state, so to make formulas less cluttered we write ck instead of ck(1). [32] Thus we cannot determine the steady state cluster density M0. The same holds for models considered in Sect. IIA. [33] This follows from (16) with a = 1/3, b = −1/3. [34] G. Falkovich, Phys. Fluids 6, 1411 (1994). [35] Online Encyclopedia of Integer Sequences, http://oeis.org. [36] P. G. J. van Dongen and M. H. Ernst, Phys. Rev. Lett. 54, 1396 (1985). [37] C. Connaughton and P. Krapivsky, Phys. Rev. E 81, 035303(R) (2010). [38] E. BenNaim and P. L. Krapivsky, Phys. Rev. E 77, 061132 (2008). [39] This calculation is formal because we have previously assumed C(a) to be independent of m. [40] N. V. Brilliantov and P. L. Krapivsky, J. Phys. A Math. Gen. 24, 4789 (1991). 
URI:  http://wrap.warwick.ac.uk/id/eprint/44640 
Actions (login required)
View Item 