Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Resist or die : FOXO transcription factors determine the cellular response to chemotherapy

Tools
- Tools
+ Tools

Gomes, Ana R., Brosens, Jan J. and Lam, Eric W.-F. (2008) Resist or die : FOXO transcription factors determine the cellular response to chemotherapy. Cell Cycle, Vol.7 (No.20). pp. 3133-3136. doi:10.4161/cc.7.20.6920 ISSN 1538-4101.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.4161/cc.7.20.6920

Request Changes to record.

Abstract

FOXO transcription factors are important regulators of cell fate decisions, capable of inducing cell death as well as promoting cell survival and resistance to environmental stress. As is the case for many cancers, apoptosis of leukaemic cells in response to chemotherapeutic drugs such as doxorubicin is dependent upon FOXO activation. Surprisingly, prolonged FOXO activity paradoxically promotes drug-resistance in leukaemia by enhancing the expression of critical signal intermediates that drive the activity of the Class 1A PI3-K/Akt survival pathway. Additionally, under continuous stress, FOXO factors also induce the expression of genes important for drug efflux, antioxidant defence, and DNA damage repair. Thus, the same effector molecules, FOXOs, are responsible for not only the initial therapeutic response to cancer drugs but also the subsequent acquisition of resistance. This emerging evidence demonstrates that FOXO factors have a dual role in stress response and function at the axis of cancer drug sensitivity and resistance. Nevertheless, the mechanism that allows FOXO to escape the negative control of the PI3-K/Akt pathway in response to persistent cytotoxic stress and to switch its control from pro-apoptotic to pro-survival target genes is not well understood but likely to involve a series of defined post-translational protein modifications.

Item Type: Journal Article
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Reproductive Health ( - until July 2016)
Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School
Journal or Publication Title: Cell Cycle
Publisher: Landes Bioscience
ISSN: 1538-4101
Official Date: 15 October 2008
Dates:
DateEvent
15 October 2008Published
Volume: Vol.7
Number: No.20
Page Range: pp. 3133-3136
DOI: 10.4161/cc.7.20.6920
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us