
The Library
Application of dimensionality reduction to visualisation of high-throughput data and building of a classification model in formulated consumer product design
Tools
Peremezhney, Nicolai, Connaughton, Colm, Unali, Gianfranco, Hines, Evor and Lapkin, Alexei (2012) Application of dimensionality reduction to visualisation of high-throughput data and building of a classification model in formulated consumer product design. Chemical Engineering Research and Design, Volume 90 (Number 12). pp. 2179-2185. doi:10.1016/j.cherd.2012.05.010 ISSN 0263-8762.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1016/j.cherd.2012.05.010
Abstract
Several dimensionality reduction techniques were applied to two data sets of consumer products formulations in order to infer their intrinsic structure and specific product design rules. High throughput experiments were used to generate the data sets of sufficient size. Supervised isometric feature mapping (S-Isomap) was combined with a k-nearest neighbours (k-NN) classifier and k-means clustering algorithm to perform categorization of viscosity of new formulations, not used to train the model. We compared prediction results of this approach with several well-established classification models. The results show the accuracy of the S-Isomap based approach to be superior and with a potential for further improvement. Compared with other dimensionality reduction techniques, applying S-Isomap has allowed for a superior visualization of category separation within the formulations, for the data sets used.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | T Technology > TA Engineering (General). Civil engineering (General) T Technology > TP Chemical technology |
||||
Divisions: | Faculty of Science, Engineering and Medicine > Engineering > Engineering | ||||
Journal or Publication Title: | Chemical Engineering Research and Design | ||||
Publisher: | Elsevier Ltd. | ||||
ISSN: | 0263-8762 | ||||
Official Date: | December 2012 | ||||
Dates: |
|
||||
Volume: | Volume 90 | ||||
Number: | Number 12 | ||||
Page Range: | pp. 2179-2185 | ||||
DOI: | 10.1016/j.cherd.2012.05.010 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |