Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The Forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression

Tools
- Tools
+ Tools

Hui, R. C.-Y., Gomes, Ana R., Constantinidou, D., Costa, J. R., Karadedou, C. T., Fernandez de Mattos, S., Wymann, M. P., Brosens, Jan J., Schulze, A. and Lam, Eric W.-F. (2008) The Forkhead transcription factor FOXO3a increases phosphoinositide-3 kinase/Akt activity in drug-resistant leukemic cells through induction of PIK3CA expression. Molecular and Cellular Biology, Vol.28 (No.19). pp. 5886-5898. doi:10.1128/MCB.01265-07 ISSN 0270-7306.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1128/MCB.01265-07

Request Changes to record.

Abstract

The phosphoinositide-3 kinase (PI3K)/Akt signal pathway plays a key role in the tumorigenesis of many cancers and in the subsequent development of drug resistance. Using the K562 chronic myelogenous leukemia (CML) cell line and the doxorubicin-resistant derivative lines KD30 and KD225 as models, we observed that enhanced PI3K/Akt activity and the acquisition of chemoresistance correlated unexpectedly with the increased expression and nuclear accumulation of FOXO3a. Moreover, we found that the induction of FOXO3a activity in naïve K562 cells was sufficient to enhance PI3K/Akt activity and to confer resistance to the cytotoxic effects of doxorubicin. Conversely, the knockdown of endogenous FOXO3a expression reduced PI3K/Akt activity and sensitized these cells to doxorubicin. Further chromatin immunoprecipitation and promoter mutation analyses demonstrated that FOXO3a regulates the expression of the PI3K catalytic subunit p110α through the activation of a promoter region proximal to a novel untranslated exon upstream from the reported transcription start site of the p110α gene PIK3CA. As was the case for FOXO3a, the expression or knockdown of p110α was sufficient to amplify or reduce PI3K/Akt activity, respectively. Thus, our results suggest that the chronic activation of FOXO3a by doxorubicin in CML cells can enhance survival through a feedback mechanism that involves enhanced p110α expression and hyperactivation of the PI3K/Akt pathway.

Item Type: Journal Article
Subjects: R Medicine > R Medicine (General)
Divisions: Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Reproductive Health ( - until July 2016)
Faculty of Science, Engineering and Medicine > Medicine > Warwick Medical School
Journal or Publication Title: Molecular and Cellular Biology
Publisher: American Society for Microbiology
ISSN: 0270-7306
Official Date: October 2008
Dates:
DateEvent
October 2008Published
Volume: Vol.28
Number: No.19
Page Range: pp. 5886-5898
DOI: 10.1128/MCB.01265-07
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us