Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Inferring the evolutionary history of the plant pathogen pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand

Tools
- Tools
+ Tools

Morris, C. E., Sands, D. C., Vanneste, J. L., Montarry, J., Oakley, Brian B., Guilbaud, C. and Glaux, C. (2010) Inferring the evolutionary history of the plant pathogen pseudomonas syringae from its biogeography in headwaters of rivers in North America, Europe, and New Zealand. mBio, Vol.1 (No.3). Article no. e00107-10. doi:10.1128/mBio.00107-10

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1128/mBio.00107-10

Request Changes to record.

Abstract

Nonhost environmental reservoirs of pathogens play key roles in their evolutionary ecology and in particular in the evolution of pathogenicity. In light of recent reports of the plant pathogen Pseudomonas syringae in pristine waters outside agricultural regions and its dissemination via the water cycle, we have examined the genetic and phenotypic diversity, population structure, and biogeography of P. syringae from headwaters of rivers on three continents and their phylogenetic relationship to strains from crops. A collection of 236 strains from 11 sites in the United States, in France, and in New Zealand was characterized for genetic diversity based on housekeeping gene sequences and for phenotypic diversity based on measures of pathogenicity and ice nucleation activity. Phylogenetic analyses revealed several new genetic clades from water. The genetic structure of P. syringae populations was not influenced by geographic location or water chemistry, whereas the phenotypic structure was affected by these parameters. Comparison with strains from crops revealed that the metapopulation of P. syringae is structured into three genetic ecotypes: a crop-specific type, a water-specific type, and an abundant ecotype found in both habitats. Aggressiveness of strains was significantly and positively correlated with ice nucleation activity. Furthermore, the ubiquitous genotypes were the most aggressive, on average. The abundance and diversity in water relative to crops suggest that adaptation to the freshwater habitat has played a nonnegligible role in the evolutionary history of P. syringae. We discuss how adaptation to the water cycle is linked to the epidemiological success of this plant pathogen.

IMPORTANCE Many pathogens have life cycles that involve survival and multiplication in nonhost environmental habitats. For human pathogens, numerous studies have revealed how adaptation to environmental habitats is linked to the evolution of their pathogenicity and emergence of pathogens. For plant pathogens, the link between adaptation to nonhost habitats and pathogenicity has not been explored. Here we have examined the genetic and phenotypic diversity of the plant pathogen Pseudomonas syringae in headwaters of rivers on three continents and compared it to that of strains from crops. This model pathogen was chosen because it is widely abundant in habitats associated with the water cycle and in particular in pristine waters outside agricultural regions. This work reveals that there is considerable exchange of populations between freshwater and agricultural habitats and that those in the former contribute considerably to the diversification of P. syringae.

Item Type: Journal Article
Subjects: Q Science > QR Microbiology
Divisions: Faculty of Science > Life Sciences (2010- ) > Biological Sciences ( -2010)
Journal or Publication Title: mBio
Publisher: American Society for Microbiology
ISSN: 2150-7511
Official Date: July 2010
Dates:
DateEvent
July 2010Published
Volume: Vol.1
Number: No.3
Number of Pages: 11
Page Range: Article no. e00107-10
DOI: 10.1128/mBio.00107-10
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: Teton National Park
Grant number: GRTE-2007-SCI-0023

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us