Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Resolution improvement methods applied to digital holography

Tools
- Tools
+ Tools

Claus, Daniel (2010) Resolution improvement methods applied to digital holography. PhD thesis, University of Warwick.

[img]
Preview
Text
WRAP_THESIS_Claus_2010.pdf - Submitted Version

Download (72Mb) | Preview
Official URL: http://webcat.warwick.ac.uk/record=b2569151~S1

Request Changes to record.

Abstract

This thesis discusses the creation, acquisition and processing of digital holograms.
Several techniques to improve the optical resolution have been investigated and
developed. The optical resolution of numerically reconstructed digital holograms
is restricted by both the sampling frequency and the overall sensor-size of the
digital camera chip used. This thesis explores the limitations on the optical resolution
of the holograms obtained. A typical sensor-size and sampling frequency
for digital holograms is 10 mm and 100 lp/mm, respectively, whereas holographic
plates used for optical holography can be more than a meter in size and have a
sampling frequency of 3000 lp/mm. In order to take full advantage of the benefits
digital holography offers, such as fast image acquisition and direct phase accessibility,
the problem of reduced resolution needs to be overcome. Three resolution
improvement methods have been developed in the scope of this PhD thesis. Prior
to implementing the resolution improvement methods, different holographic setups
have been analyzed, using the Space-bandwidth product (SBP) to calculate
the information distribution both in the recording and reconstruction process.
The first resolution improvement method is based on the synthetic aperture
method. In this manner an increased sensor area can be obtained resulting in
a larger numerical aperture (NA). A larger NA enables a more detailed reconstruction.
The problem encountered in doing this is that an increased optical resolution results in a smaller depth of field. This has been overcome in this thesis
by applying the extended depth of field method. As a result a high resolution
in focus reconstruction of all longitudinal object regions is obtained. Moreover,
the extended depth of field method allows a topological mapping of the object.
The second resolution improvement method is based on sampling the interference
pattern with sub-pixel accuracy. This was carried out on a CMOS-sensor
and implemented by moving the light sensitive pixel-area into the dead zone in a
4x4 grid to cover whole the pixel-area. As a result the sensor's sampling frequency
is doubled. The increased sampling frequency permits a reduction of the recording
distance which results in an increased optical resolution of the reconstructed
hologram.
The third and novel approach described in this thesis has been to increase
the optical resolution stored in a digital hologram by the combination of the synthetic
aperture and the sub-pixel sampling methodBy analogy with the Fresnel-.
The resolution improvement methods have been demonstrated both for lens-less
digital holography and digital holographic microscopy.

Item Type: Thesis (PhD)
Subjects: Q Science > QC Physics
T Technology > TA Engineering (General). Civil engineering (General)
Library of Congress Subject Headings (LCSH): Holography, Resolution (Optics), Digital images, Image processing -- Digital techniques
Official Date: 2010
Dates:
DateEvent
2010Submitted
Institution: University of Warwick
Theses Department: School of Engineering
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Bryanston-Cross, P. ; Timmerman, Brenda
Extent: xxxii, 265 leaves : ill., charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us