Original citation:

Permanent WRAP url:
http://wrap.warwick.ac.uk/48252

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This article is made available under the Creative Commons Attribution- 3.0 Unported (CC BY 3.0) license and may be reused according to the conditions of the license. For more details see http://creativecommons.org/licenses/by/3.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk
Measurement of the CP violating phase ϕ_3 in $B_s^0 \rightarrow J/\psi f_0(980)$

LHCb Collaboration

Abstract

Measurement of mixing-induced CP violation in B_s^0 decays is of prime importance in probing new physics. So far only the channel $B_s^0 \rightarrow J/\psi \phi$ has been used. Here we report on a measurement using an LHCb data sample of 0.41 fb$^{-1}$, in the CP odd eigenstate $J/\psi f_0(980)$, where $f_0(980) \rightarrow \pi^+ \pi^-$. A time-dependent fit of the data with the B_s^0 lifetime and the difference in widths of the heavy and light eigenstates constrained to the values obtained from $B_s^0 \rightarrow J/\psi \phi$ yields a value of the CP violating phase of $-0.44 \pm 0.44 \pm 0.02$ rad, consistent with the Standard Model expectation.

1. Introduction

An important goal of heavy flavour experiments is to measure the mixing-induced CP violation phase in B_s^0 decays, ϕ_3. As this phase is predicted to be small in the Standard Model (SM) [1], new physics can induce large changes [2]. Here we use the decay mode $B_s^0 \rightarrow J/\psi f_0(980)$. If only the dominant decay diagrams shown in Fig. 1 contribute, then the value of ϕ_3 using $B_s^0 \rightarrow J/\psi f_0(980)$ is the same as that measured using $B_s^0 \rightarrow J/\psi \phi$ decay.

Motivated by a prediction in Ref. [3], LHCb searched for and made the first observation of $B_s^0 \rightarrow J/\psi f_0(980)$ decays [4] that was subsequently confirmed by other experiments [5,6]. Time-dependent CP violation can be measured without an angular analysis, as the final state is a CP eigenstate. From now on f_0 will stand only for $f_0(980)$.

In the Standard Model, in terms of CKM matrix elements, $\phi_3 = -2 \arg \left(\frac{V_{ub}^* V_{cb}}{V_{ub} V_{cb}} \right)$. The equations below are written assuming that there is only one decay amplitude, ignoring possible small contributions from other diagrams [7]. The decay time evolutions for initial B_s^0 and \bar{B}_s^0 are [8]

$$\Gamma(B_s^0 \rightarrow J/\psi f_0) \propto N e^{-\Delta \Gamma_{f_0}} \left\{ e^{\Delta \Gamma_{f_0} t/2} (1 + \cos \phi_3) + e^{-\Delta \Gamma_{f_0} t/2} (1 - \cos \phi_3) \right\} \pm \sin \phi_3 \sin(\Delta m_{s} t),$$

where $\Delta \Gamma_{f_0}$ is the decay width difference between light and heavy mass eigenstates, $\Delta \Gamma_{f_0} = \Gamma_{L} - \Gamma_{H}$. The decay width Γ_{f_0} is the average of the widths Γ_{L} and Γ_{H}, and N is a time-independent normalisation factor. The plus sign in front of the $\sin \phi_3$ term applies to an initial B_s^0, and the minus sign for an initial \bar{B}_s^0 meson. The time evolution of the untagged rate is then

$$\Gamma(B_s^0 \rightarrow J/\psi f_0) + \Gamma(\bar{B}_s^0 \rightarrow J/\psi f_0) = N e^{-\Delta \Gamma_{f_0} t} \left\{ e^{\Delta \Gamma_{f_0} t/2} (1 + \cos \phi_3) + e^{-\Delta \Gamma_{f_0} t/2} (1 - \cos \phi_3) \right\} \pm \sin \phi_3 \sin(\Delta m_{s} t).$$

Note that there is information in the shape of the lifetime distribution that correlates $\Delta \Gamma_{f_0}$ and ϕ_3. In this analysis we will use both samples of flavour tagged and untagged decays. Both Eqs. (1) and (2) are insensitive to the change $\phi_3 \rightarrow \phi_3 + \pi$ when $\Delta \Gamma_{f_0} \rightarrow -\Delta \Gamma_{f_0}$.

2. Selection requirements

We use a data sample of 0.41 fb$^{-1}$ collected in 2010 and the first half of 2011 at a centre-of-mass energy of 7 TeV. This analysis is restricted to events accepted by a $J/\psi \rightarrow \mu^+ \mu^-$ trigger. The LHCb detector and the track reconstruction are described in Ref. [9]. The detector elements most important for this analysis are the Velo, a silicon strip device that surrounds the pp interaction region, and other tracking devices. Two Ring Imaging
Cherenkov (RICH) detectors are used to identify charged hadrons, while muons are identified using their penetration through iron.

To be considered a $J/\psi \rightarrow \mu^+ \mu^-$ candidate particles of opposite charge are required to have transverse momentum, p_T, greater than 500 MeV, be identified as muons, and form a vertex with fit χ^2 per number of degrees of freedom (ndof) less than 11. We work in units where $c = \hbar = 1$. Only candidates with dimuon invariant mass between -48 MeV to $+43$ MeV of the J/ψ mass peak are selected. Pion candidates are selected if they are inconsistent with having been produced at the primary vertex. The impact parameter (IP) is the minimum distance of approach of the track with respect to the primary vertex. We require that the IP is zero be > 900 MeV.

To select B^0_s candidates we further require that the two pions form a vertex with a $\chi^2 < 10$, that they form a candidate B^0_s vertex with the J/ψ where the vertex fit χ^2/ndof < 5, that this vertex is > 1.5 mm from the primary, and points to the primary vertex at an angle not different from its momentum direction by more than 11.8 mrad.

The invariant mass of selected $\mu^+ \mu^- \pi^+ \pi^-$ combinations, where the di-muon pair is constrained to have the J/ψ mass, is shown in Fig. 2 for both opposite-sign and like-sign di-pion combinations, requiring di-pion invariant masses within 90 MeV of 980 MeV. Here like-sign combinations are defined as the sum of $\pi^+ \pi^+$ and $\pi^- \pi^-$ candidates. The signal shape, the same for both B^0_s and B^0, is a double-Gaussian, where the core Gaussian’s mean and width are allowed to vary, and the fraction and width ratio for the second Gaussian are fixed to the values obtained in a separate fit to $B^0_s \rightarrow J/\psi \phi$. The mean values of both Gaussians are required to be the same. The combinatoric background is described by an exponential function. Other background components are $B^- \rightarrow J/\psi h^-$, where h^- can be either a K^- or a π^- and an additional π^+ is found, $B^+ \rightarrow J/\psi \eta'$, $\eta' \rightarrow \rho \gamma$, $B^0 \rightarrow J/\psi \phi$, $\phi \rightarrow \pi^+ \pi^- \pi^0$, and $B^0 \rightarrow J/\psi K^{*0}$. The shapes for these background sources are taken from Monte Carlo simulation based on PYTHIA [10] and GEANT-4 [11] with their normalisations allowed to vary. We performed a simultaneous fit to the opposite-sign and like-sign di-pion event distributions. There are 1428 ± 47 signal events within ± 20 MeV of the B^0_s mass peak. The background under the peak in this interval is 467 ± 11 events, giving a signal purity of 75%. Importantly, the like-sign di-pion yield at masses higher than the B^0_s gives an excellent description of the shape and level of the background. Simulation studies have demonstrated that it also describes the background under the peak.

The invariant mass of di-pion combinations is shown in Fig. 3 for both opposite-sign and like-sign di-pion combinations within ± 20 MeV of the B^0_s candidate mass peak. A large signal is present near the nominal $f_0(980)$ mass. Other $B^0_s \rightarrow J/\psi \pi^+ \pi^-$ signal events are present at higher masses. In what follows we only use events in the f_0 signal region from 890 to 1070 MeV.

3. S-wave content

Since the initial isospin of the $s\bar{s}$ system that produces the two pions is zero, and since the C-parity of the two pions is even, only even spin is allowed for the $\pi^+ \pi^-$ pair. Since no spin-4 resonances have been observed below 2 GeV, the angular distributions are described by the coherent combination of spin-0 and spin-2 resonant decays. We use the helicity basis and define the decay angles as $\theta_{J/\psi}$, the angle of the μ^+ in the J/ψ rest frame with respect to the B^0_s direction, and θ_{f_0}, the angle of the π^+ in the $\pi^+ \pi^-$ rest frame with respect to the B^0_s direction. The spin-0 amplitude is labelled as A_0, the three spin-2 amplitudes as A_2i, $i = -1, 0, 1$, and δ is the strong phase between the A_{20} and A_{00} amplitudes.

After integrating over the angle between the two decay planes the joint angular distribution is given by [12]

$$\frac{d\Gamma}{d\cos\theta_{f_0} d\cos\theta_{J/\psi}} = \left|A_0 + \frac{1}{2}A_2 e^{i\delta}\sqrt{3\cos^2\theta_{f_0} - 1}\right|^2.$$

Fig. 2. (a) Invariant mass of $J/\psi \pi^+ \pi^-$ combinations when the $\pi^+ \pi^-$ pair is required to be within ± 90 MeV of the nominal $f_0(980)$ mass. The data have been fitted with a double-Gaussian signal and several background functions. The thin (red) solid line shows the signal, the long-dashed (brown) line the combinatoric background, the dashed (green) line the B^- background (mostly at masses above the signal peak), the dotted (blue) line the $B^0 \rightarrow J/\psi F^{0\pi}$ background, the dash-dot line (purple) the $B^0 \rightarrow J/\psi \phi$ background, the dotted line (black) the sum of $B^0 \rightarrow J/\psi \eta'$ and $J/\psi \phi$ backgrounds (barely visible), and the thick-solid (black) line the total. (b) The mass distribution for like-sign candidates. (For interpretation of the references to colour in this figure, the reader is referred to the web version of this Letter.)

Fig. 3. Invariant mass of $\pi^+ \pi^-$ combinations (points) and a fit to the $\pi^+ \pi^-$ data (dashed line) for events in the B^0_s signal region. The region between the vertical arrows contains the events selected for further analysis.
4. Time resolution and acceptance

The B^0_s decay time is defined here as $t = m \vec{d} \cdot \vec{p}/|\vec{p}|^2$, where m is the reconstructed invariant mass, \vec{p} the momentum and \vec{d} the flight vector of the candidate B^0_s from the primary to the secondary vertices. If more than one primary vertex is found, the one that corresponds to the smallest IP χ^2 of the B^0_s candidate is chosen.

The decay time resolution probability distribution function (PDF) is determined from data using J/ψ detected without any requirement on detachment from the primary vertex (prompt) plus two oppositely charged particles from the primary vertex with the same selection criteria as for $J/\psi f_0$ events, except for the IP χ^2 requirement. Monte Carlo simulation shows that the time resolution PDF is well modelled by these events. Fig. 5 shows the t distribution for our $J/\psi \pi^+ \pi^-$ prompt 2011 data sample. To describe the background time distribution three components are needed, (i) prompt, (ii) a small long lived background ($f_{LL1} = 0.26 \pm 0.10\%$) modelled by an exponential decay function, and (iii) an even smaller component ($f_{LL2} = 0.46 \pm 0.02\%$) from b-hadron decay described by an additional exponential. Each of these are convolved individually with a triple-Gaussian resolution function with common means, whose components are listed in Table 1. The overall equivalent time resolution is $\sigma_t = 38.4$ fs.

The functional form for the time dependence is given by

$$N(t) = (1 - f_{LL1} - f_{LL2}) \cdot 3G + f_{LL1} \left[\frac{1}{\tau_1} \exp(-t/\tau_1) \otimes 3G \right] + f_{LL2} \cdot \left[1/\tau_2 \cdot \exp(-t/\tau_2) \otimes 3G \right].$$

(5)

The fractions f_{LL1} and f_{LL2}, and their respective lifetimes τ_1 and τ_2, are varied in the fit. The parameters of the triple-Gaussian time resolution, $3G$, are listed in Table 1. The symbol \otimes indicates a convolution.

A decay time acceptance is introduced by the triggering and event selection requirements. Monte Carlo simulations show that the shape of the decay time acceptance function is well modelled by

$$A(t) = C \left[\frac{[a(t - t_0)]^b}{1 + [a(t - t_0)]^b} \right].$$

(6)

where C is a normalisation constant. Furthermore, the parameter values are found to be the same for simulated $B^0 \rightarrow J/\psi R^{0}$ events with $R^{0} \rightarrow K^{-} \pi^{+}$, as for $B^0 \rightarrow J/\psi f_0$.

Fig. 6(a) shows the $J/\psi R^{0}$ mass distribution in data with an additional requirement that the kaon candidate be positively
identified in the RICH system, and that the $K^–\pi^+$ invariant mass be within ±100 MeV of 892 MeV. There are 36881 \pm 208 signal events. The sideband subtracted decay time distribution is shown in Fig. 6(b) and fit using the above defined acceptance function gives values of $a = (1.89 \pm 0.07)$ ps$^{-1}$, $n = 1.84 \pm 0.12$, $t_0 = (0.127 \pm 0.015)$ ps, and also a value of the \overline{B} lifetime of 1510 \pm 0.016 ps, where the error is statistical only. This is in good agreement with the PDG average of 1519 \pm 0.007 ps [13].

Another check is provided by a recent CDF lifetime measurement of $\overline{B}_s^0 \to J/\psi f_0$ of 170 $^{+0.17}_{-0.11} \pm 0.03$ ps obtained by fitting the data to a single exponential [6]. Such a fit to our data yields 1.68 ± 0.05 ps, where the uncertainty is only statistical.

5. Fit strategy

5.1. Likelihood function characterisation

The selected events are used to maximise a likelihood function \[\mathcal{L} = \prod_i P(m_i, t_i, q_i), \] (7)

where m_i is the reconstructed candidate B_s^0 mass, t_i the decay time, and N the total number of events. The flavour tag, q_i, takes values of +1, −1 and 0, respectively, if the signal meson is tagged as B_s^0, \overline{B}_s^0, or untagged. The likelihood contains three components: signal, long-lived (LL) background and short-lived (SL) background.

For tagged events we have

\[
P(m_i, t_i, q_i) = N_{\text{sig}}^q \mu_{\text{sig}}^q P_{\text{sig}}^q (m_i) P_{\text{f}}^q (t_i, q_i) + N_{\text{LL}}^q \mu_{\text{LL}}^q P_{\text{LL}}^q (m_i) P_{\text{f}}^q (t_i) + N_{\text{SL}}^q \mu_{\text{SL}}^q P_{\text{SL}}^q (m_i) P_{\text{f}}^q (t_i), \] (8)

where: (i) $P_{\text{sig}}^q (m_i)$ and $P_{\text{m}}^q (m_i)$ are the PDFs describing the dependence on reconstructed mass m_i for signal and background events; (ii) $P_{\text{f}}^q (t_i, q_i)$ is the PDF used to describe the signal decay rates for the decay time t_i; (iii) $P_{\text{LL}}^q (t_i)$ is the PDF describing the long-lived background decay rates, and $P_{\text{SL}}^q (t_i)$ describes the short-lived background, both of which do not depend on the tagging; (iv) μ_{tag} refers to the respective tagging efficiencies for signal, long-lived and short-lived backgrounds.

For untagged events we have

\[
P(m_i, t_i, 0) = N_{\text{sig}} (1 - \epsilon_{\text{tag}}) \mu_{\text{sig}} P_{\text{sig}} (m_i) P_{\text{f}} (t_i, 0) + N_{\text{LL}} (1 - \epsilon_{\text{tag}}) \mu_{\text{LL}} P_{\text{LL}} (m_i) P_{\text{f}} (t_i) + N_{\text{SL}} (1 - \epsilon_{\text{tag}}) \mu_{\text{SL}} P_{\text{SL}} (m_i) P_{\text{f}} (t_i). \] (9)

The total yields of the signal and background components are fixed to the number of events determined from the fit to the mass distributions (see Section 2). For both, the PDF is a product which models the invariant mass distribution and the time-dependent decay rates. The B_s^0 mass spectrum is described by a double-Gaussian for the signal and an exponential function for the background (see Fig. 2). From Eqs. (1) and (2), the decay time function for the signal is

\[
R(t, q_i) \propto e^{-\frac{t}{\tau_q}} \left\{ \cos \frac{\Delta \Gamma t}{2} + \cos \phi_{\text{q}} \sin \frac{\Delta \Gamma t}{2} \right\} + q_i \omega D \sin \phi_{\text{q}} \sin (\Delta m t), \] (10)

The probability of a wrong tag, ω, is included in the dilution factor $D \equiv (1 - 2\omega)$ (see Section 5.2).

The signal PDF is taken as a product of the decay time function, $R(t, q_i)$, convolved with the triple Gaussian time resolution.
function multiplied with the time acceptance function found from \(J/\psi K^{*0} \) discussed in Section 4. The background decay time PDFs are determined using the like-sign \(\pi^+\pi^- \) combinations. The time distribution of the like-sign background agrees in both yield and shape with the opposite-sign events in the upper \(B_s^0 \) mass candidate sideband 50–200 MeV above the mass peak.

The background functions and parameters are listed in Table 1. The short-lived background component results from combining prompt \(J/\psi \) events with a opposite-sign pion pair that is not rejected by our selection requirements. The long-lived part constitutes \(\approx 85\% \) of the background.

5.2. Flavour tagging

Flavour tagging uses decays of the other \(b \) hadron in the event, exploiting information from several sources including high transverse momentum muons, electrons and kaons, and the charge of inclusively reconstructed secondary vertices. The decisions of the four tagging algorithms are individually calibrated using \(B^- \rightarrow J/\psi K^- \) decays and combined [14]. The effective tagging performance is characterised by \(e_{\text{tag}}D^2 \), where \(e_{\text{tag}} \) is the efficiency and \(D \) the dilution. We use a per-candidate analysis that uses both the information of the tag decision and of the predicted mistag probability to classify and assign a weight to each event. The PDFs of the predicted mistag are taken from the side-bands for the background and side-band subtracted data for the signal.

The calibration procedure uses a linear dependence between the estimated per event mistag probability \(\eta \) and the actual mistag probability \(\omega \) given by \(\omega = p_0 + p_1 \cdot (\eta - \langle \eta \rangle) \), where \(p_0 \) and \(p_1 \) are calibration parameters and \(\langle \eta \rangle \) is the average estimated mistag probability as determined from the calibration sample. In the 2011 data \(p_0 = 0.384 \pm 0.003 \pm 0.009 \), \(p_1 = 1.037 \pm 0.040 \pm 0.070 \), and \(\langle \eta \rangle = 0.379 \), with similar values in the 2010 sample. In this Letter whenever two errors are given, the first is statistical and the second systematic. Systematic uncertainties are evaluated by using different channels to perform the calibration including \(B^0 \rightarrow D^{*+} \mu^- \Pi, B^- \rightarrow J/\psi K^- \) separately from \(B^- \rightarrow J/\psi K^- \) and viewing the dependence on different data taking periods. For our 2011 sample \(e_{\text{tag}} \) is \((25.6 \pm 1.3)\%\) providing us with 365 \pm 22 tagged signal events. For signal the mean mistag fraction, \(\langle \eta \rangle \), is \(0.375 \pm 0.005 \), while for background the mean is \(0.388 \pm 0.006 \). After subtracting background using like-sign events, we determine \(D = 0.289 \) leading to an \(\epsilon D^2 \) of 2.1% [14].

6. Results

Several parameters are input as Gaussian constraints in the fit. These include the LHCb measured value of \(\Delta m_s = 17.63 \pm 0.11 \pm 0.02 \) ps\(^{-1} \) [15], the tagging parameters \(p_0 \) and \(p_1 \), and both the decay width given by the \(J/\psi \phi \) analysis of \(\Gamma_s = (0.657 \pm 0.009 \pm 0.008) \) ps\(^{-1} \) and \(\Delta \Gamma_s = (0.123 \pm 0.029 \pm 0.011) \) ps\(^{-1} \) [16]; we also include the correlation of \(-0.30 \) between \(\Gamma_s \) and \(\Delta \Gamma_s \). The fit has been validated both with samples generated from PDFs and with full Monte Carlo simulations.

Fig. 7 shows the difference of log-likelihood value compared to that at the point with the best fit, as a function of \(\phi_s \). At each \(\phi_s \) value, the likelihood function is maximised with respect to all other parameters. The best fit value is \(\phi_s = -0.44 \pm 0.44 \) rad. The projected decay time distribution is shown in Fig. 8.

7. Systematic uncertainties

The systematic errors are small compared to the statistical errors. No additional uncertainty is needed for errors on \(\Delta m_s, \Gamma_s, \Delta \Gamma_s \) or flavour tagging, since Gaussian constraints are applied in the fit. Other uncertainties associated parameters fixed in the fit are evaluated by changing them by \(\pm 1 \) standard deviation from their nominal values and determining the change in fit value of \(\phi_s \). These are listed in Table 2. An additional uncertainty is included due to the possible \(CP \) even \(D \)-wave. This has been measured at \((0.0 \pm 0.1)\% \) of the \(S \)-wave and contributes a small error to \(\phi_s \), \(+0.007 \) rad, as determined by repeating the fit with the mistag rate increased by 1.7%. The asymmetry in production between \(B^0 \) and \(B_s^0 \) is believed to be small, about 1%, and similar to the same asymmetry in \(B^0 \) production which has been measured by LHCb to be about 1% [17]. The effect of neglecting a 1% production asymmetry is the same as ignoring a 1% difference in the mistag rate and causes negligible bias in \(\phi_s \).

8. Conclusions

Using 0.41 fb\(^{-1} \) of data collected with the LHCb detector, the decay mode \(B_s^0 \rightarrow J/\psi f_0 \), \(f_0 \rightarrow \pi^+\pi^- \) is selected and then used to measure the \(CP \) violating phase, \(\phi_s \). We perform a time-
dependent fit of the data with the B^0_s lifetime and the difference in widths of the heavy and light eigenstates constrained. Based on the likelihood curve in Fig. 7 we find

$$\phi_3 = -0.44 \pm 0.44 \pm 0.02 \text{ rad},$$

consistent with the SM value of $-0.0363^{+0.0016}_{-0.0015} \text{ rad}$ [1]. Assuming the SM, the probability to observe our measured value is 36%. There is an ambiguous solution with $\phi_3 \rightarrow \pi - \phi_3$ and $\Delta \Gamma_s \rightarrow -\Delta \Gamma_s$. The precision of the result mostly results from using the tagged sample, though the untagged events also contribute.

LHCb provides an independent measurement of $\phi_3 = 0.15 \pm 0.18 \pm 0.06 \text{ [16]}$ using the $B^0_s \rightarrow J/\psi \phi$ decay. Combining these two results, taking into account all correlations by performing a joint fit, we obtain

$$\phi_3 = 0.07 \pm 0.17 \pm 0.06 \text{ rad (combined).}$$

This is the most accurate determination of ϕ_3 to date, and is consistent with the SM prediction.

Acknowledgements

We express our gratitude to our colleagues in the CERN accelerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at CERN and at the LHCb institutes, and acknowledge support from the National Agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); CERN; NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); SFI (Ireland); INFN (Italy); FOM and NWO (The Netherlands); SCSR (Poland); ANCS (Romania); MinES of Russia and Rosatom (Russia); MICINN, XuntaGal and GENCAT (Spain); SNSF and SER (Switzerland); NAS Ukraine (Ukraine); STFC (United Kingdom); NSF (USA). We also acknowledge the support received from the ERC under FP7 and the Region Auvergne.

Open access

This article is published Open Access at sciencedirect.com. It is distributed under the terms of the Creative Commons Attribution License 3.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are credited.

References

[6] D0 Collaboration, V.M. Abazov, et al., Measurement of the relative branching ratio of $B^0_s \rightarrow J/\psi f_0(980)$ to $B^0_s \rightarrow J/\psi \phi$, arXiv:1110.4272.
[17] LHCb Collaboration, R. Aaij, et al., Measurement of the $B_s^0 \rightarrow B^0 \psi$ oscillation frequency Δm, in the decays $B^+ \rightarrow D_s^+ \psi(2S)$ into $J/\psi \phi$, arXiv:1112.4311.

LHCb Collaboration
