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COLEMAN MAPS AND THE p-ADIC REGULATOR

ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

Abstract. In this paper, we study the Coleman maps for a crystalline rep-

resentation V with non-negative Hodge-Tate weights via Perrin-Riou’s p-adic

“regulator” or “expanded logarithm” map LV . Denote by H(Γ) the algebra of
Qp-valued distributions on Γ = Gal(Qp(µp∞ )/Qp). Our first result determines

the H(Γ)-elementary divisors of the quotient of Dcris(V )⊗ (B+
rig,Qp )ψ=0 by the

H(Γ)-submodule generated by (ϕ∗N(V ))ψ=0, where N(V ) is the Wach module

of V . By comparing the determinant of this map with that of LV (which can
be computed via Perrin-Riou’s explicit reciprocity law), we obtain a precise

description of the images of the Coleman maps. In the case when V arises
from a modular form, we get some stronger results about the integral Cole-

man maps, and we can remove many technical assumptions that were required

in our previous work in order to reformulate Kato’s main conjecture in terms
of cotorsion Selmer groups and bounded p-adic L-functions.
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1. Introduction

1.1. Background. Let p be an odd prime, and write Q∞ = Q(µp∞). Define the
Galois groups Γ = Gal(Q∞/Q) and Γ1 = Gal(Q∞/Q(µp)). Note that Γ ∼= ∆× Γ1,
where ∆ is cyclic of order p − 1 and Γ1

∼= Zp. For H ∈ {Γ,Γ1}, denote by Λ(H)
the Iwasawa algebra of H, and ΛQp(H) = Λ(H)⊗Zp Qp.

Let V be a crystalline representation of GQp of dimension d with non-negative
Hodge-Tate weights. (We adopt the convention that the cyclotomic character has
Hodge-Tate weight 1, so this condition is equivalent to Fil1 Dcris(V ) = 0.) We define

H1
Iw(Qp, V ) := Qp ⊗Zp lim←−

n

H1(Q(µpn), T ),

where T is a GQp -stable Zp-lattice in V . This is a ΛQp(Γ)-module independent of the
choice of T . In [LLZ10], we construct Λ(Γ)-homomorphisms (called the Coleman
maps)

Coli : H1
Iw(Qp, V ) - ΛQp(Γ)

for i = 1, . . . , d, depending on a choice of basis of the Wach module N(V ). In the
case when V = Vf (k − 1), where f =

∑
anq

n is a modular eigenform of weight
k ≥ 2 and level coprime to p (we assume that an ∈ Q for the time being in order
to simplify notation) and Vf is the 2-dimensional p-adic representation associated
to f by Deligne, these maps have two important applications. Firstly, we can
define two p-adic L-functions Lp,1, Lp,2 ∈ ΛQp(Γ) on applying the Coleman maps
to the localisation of the Kato zeta element as constructed in [Kat04]. In the
supersingular case, i.e. when p | ap, this enables us to obtain a decomposition of
the p-adic L-functions defined in [AV75], which are not elements of ΛQp(Γ) but of
the distribution algebra H(Γ). More precisely, we show that there exists a 2 × 2
matrix M∈M(2,H(Γ1)) depending only on k and ap such that(

Lp,α
Lp,β

)
=M

(
Lp,1
Lp,2

)
.

This generalises the results of of Pollack [Pol03] (when ap = 0) and Sprung [Spr09]
(when f corresponds to an elliptic curve over Q and p = 3). Secondly, by modifying
the local conditions at p in the definition of the p-Selmer group using the kernels
of the maps Coli, we define two new Selmer groups Selip(f/Q∞). These are both
Λ(Γ)-cotorsion, which is not true of the usual Selmer group in the supersingular
case.

Fixing a character η of ∆ and restricting to the η-isotypical component, we get
maps

Colηi : H1
Iw(Qp, V )η → ΛQp(Γ1).

Via the Poitou-Tate exact sequence, we can reformulate Kato’s main conjecture
(after tensoring with Qp) as follows:

Conjecture 1.1. For i = 1, 2, and each character η of ∆,

CharΛQp (Γ1)

(
Qp ⊗Zp Selip(f/Q∞)η,∨

)
= CharΛQp (Γ1)

(
Im(Colηi )/(Lηp,i)

)
where M∨ denotes the Pontryagin dual of a Λ(Γ1)-module M and CharΛQp (Γ1)M

denotes the ΛQp(Γ1)-characteristic ideal of M .
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When vp(ap) is sufficiently large, we make use of the basis of N(V ) constructed
in [BLZ04] to show that the first Coleman map is surjective under some addi-
tional technical conditions. Therefore, we can rewrite Conjecture 1.1 as follows
(see [LLZ10, Corollary 6.6]):

Theorem 1.2. Under certain technical conditions, the case of i = 1 in Conjec-

ture 1.1 is equivalent to the assertion that CharΛQp (Γ1)

(
Qp ⊗Zp Sel1p(f/Q∞)η,∨

)
is

generated by Lηp,1.

(In fact we can show that this equivalence holds integrally, i.e. without tensoring
with Qp.)

1.2. Main results. In this paper, we extend the above results in several ways. Let
V be a crystalline representation of GQp of dimension d with non-negative Hodge-
Tate weights. We make the following assumption:

Assumption 1.3. The representation V admits at least one non-critical refine-
ment, after a suitable extension of coefficients.

See §1.3.5 below for the definition of a non-critical refinement. For now, let it
suffice to say that this assumption holds for all 2-dimensional representations, and
conjecturally for all representations “arising from geometry”.

We identify Λ(Γ1) with the power series ring Zp[[X]], where X = γ − 1 for a
topological generator γ of Γ1. Denote by χ : GQp → Z×p the cyclotomic character.

Firstly, we study the structure of Nrig(V ) := N(V )⊗B+
Qp

B+
rig,Qp as a Γ-module. If

ϕ∗Nrig(V ) denotes the B+
rig,Qp -span of ϕ(Nrig(V )), then (ϕ∗Nrig(V ))ψ=0 is contained

in (B+
rig,Qp)ψ=0 ⊗Qp Dcris(V ), and both are free H(Γ)-modules of rank equal to d =

dimQp V . We determine the elementary divisors of the quotient of these modules:

Theorem A (Theorem 2.10). The H(Γ)-elementary divisors of the quotient

Dcris(V )⊗Qp H(Γ)/(ϕ∗Nrig(V ))ψ=0

are nr1 , . . . , nrd , where r1, . . . , rd are the Hodge-Tate weights of V and

nk =
log(1 +X)

X
· · · log(χ(γ)1−k(1 +X))

X − χ(γ)k−1 + 1
.

This can be seen as a H(Γ)-module analogue of [Ber04, Proposition III.2.1],
which states that the B+

rig,Qp -elementary divisors of the quotient

(B+
rig,Qp ⊗Qp Dcris(V ))/Nrig(V )

are
(
t
π

)r1
, . . . ,

(
t
π

)rd . It is striking to note that for any k ≥ 0, the Mellin transform

of nk agrees with (1 + π)ϕ
(
t
π

)k
up to a unit in B+

rig,Qp (see Proposition 1.6).

The second aim of this paper is to use Theorem A to determine the image of the
map

1− ϕ : Nrig(V )ψ=1 → (ϕ∗Nrig(V ))ψ=0.
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To do this, we make use of the following commutative diagram of H(Γ)-modules:

N(V )ψ=1
∼=

h1
Iw,V

- H1
Iw(V )

(ϕ∗Nrig(V ))ψ=0

1− ϕ
?

Dcris(V )⊗Qp (B+
rig,Qp)ψ=0

?

∩

1⊗M−1
- Dcris(V )⊗Qp H(Γ)

LV

?

Here the map LV is Perrin-Riou’s “regulator” or “expanded logarithm” map
(see [PR95]), which is a dual version of the more familiar exponential maps ΩV,h

appearing in Perrin-Riou’s earlier work [PR94]; and M : H(Γ)
∼=- (B+

rig,Qp)ψ=0

denotes the Mellin transform. The commutativity of the diagram is a theorem of
Berger [Ber03, Theorem II.13]. Colmez’s proof of the “δV -conjecture” (see [Col98,
Theorem IX.4.4]), which is part of Perrin-Riou’s explicit reciprocity law, gives a
formula for the determinant of the matrix of LV (up to units). We can compare this
with the determinant of the bottom left-hand map, which follows from Theorem A,
to deduce that 1 − ϕ : Nrig(V )ψ=1 → (ϕ∗Nrig(V ))ψ=0 is surjective up to a small
error term:

Theorem B (Corollary 4.13). Suppose that no eigenvalue of ϕ on Dcris(V ) lies
in pZ. Then for each character η of ∆, there is a short exact sequence of H(Γ1)-
modules

0 - N(V )ψ=1,η 1−ϕ- (ϕ∗N(V ))ψ=0,η Aη-
rd−1⊕
i=0

(Dcris(V )/Vi,η)(χiχ−i0 η) - 0.

Here Vi,η is a subspace of Dcris(V ) of the same dimension as Fil−iDcris(V ), and
the map Aη is the composition of the inclusion of (ϕ∗Nrig(V ))ψ=0 in Dcris(V )⊗Qp
H(Γ) with the map

⊕
i(id⊗Aη,i), where Aη,i is the natural reduction map H(Γ)→

Qp(χiχ−i0 η) obtained by quotienting out by the ideal (X + 1− χ(γ)i) · eη.

Using this we can describe the images of the Coleman maps (for any choice of
basis of N(V )):

Theorem C (Corollary 4.15). Let η be any character of ∆. Then for all 1 ≤ i ≤ d,

Im(Colηi ) =
∏
j∈Iηi

(X − χ(γ)j + 1)ΛQp(Γ1)

for some Iηi ⊂ {0, . . . , rd − 1}.

As a corollary of the proof, we also obtain a formula for the elementary divisors
of the matrix of the map LV , which can be seen as a refinement of the statement

of the δ(V )-conjecture. For i ∈ Z, define `i = log(1+X)
logp(χ(γ)) − i.
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Theorem D (Theorem 4.16). The elementary divisors of the H(Γ)-module quotient

H(Γ)⊗Qp Dcris(V )

H(Γ)⊗ΛQp (Γ) Im(LV )

are [λr1 ;λr2 ; . . . ;λrd ], where λk = `0`1 . . . `k−1.

Suppose now that V = Vf (k − 1), where f =
∑
ane

2πinz is a modular form of
weight k ≥ 2 and level prime to p, and Vf is the 2-dimensional p-adic representation
associated to f by Deligne. (Thus the Hodge-Tate weights of Vf are 0 and 1−k, and
those of V are 0 and k− 1.) As we show in §1.3.5, Assumption 1.3 is automatically
satisfied in this case, since V is 2-dimensional. In this case, we can refine the above
results to study the integral structure of the Coleman maps. Let Tf be a GQp -

stable lattice in Vf , and let us assume that the B+
Qp -basis of N(Vf ) used to define

the Coleman maps is in fact an A+
Qp -basis of N(Tf ).

Theorem E (Theorem 5.10). For i = 1, 2 and for each character η of ∆, the image
of H1

Iw(Qp, Tf )η under Colηi is a submodule of finite index of the module∏
j∈Iηi

(X − χ(γ)j + 1)

Λ(Γ1)

for some subset Iηi ⊂ {0, . . . , k − 2}. Moreover, for each η the sets Iη1 and Iη2 are
disjoint.

This theorem generalises [KP07, Proposition 1.2], which determines the images

of
(

Col∆1 ,Col∆2
)

for elliptic curves with ap = 0. As a consequence of Theorem E,
we can rewrite Conjecture 1.1 as below, without making any technical assumptions.

Theorem F. For i = 1, 2, Conjecture 1.1 is equivalent to the assertion that for

each η the characteristic ideal CharΛQp (Γ1)

(
Qp⊗Zp Selip(f/Q∞)η,∨

)
is generated by

Lηp,i/
∏
j∈Iηi

(X − χ(γ)j + 1) where Iηi is as given by Theorem E.

Finally, we explain in Section 5.3 how it is possible to choose a basis in such a
way that Iη1 = Iη2 = ∅, i.e. the modules Λ(Γ1)/ Im(Colηi ) are pseudo-null for both
i = 1 and 2.

Remark 1.4. The local results in this paper (Theorems A, B, C and D) hold with
representations of GQp replaced by representations of GF for an arbitrary finite un-
ramified extension F/Qp, with essentially the same proofs. We have chosen to work
over Qp for the sake of simplicity, since this is all that is needed for applications to
modular forms.

In a forthcoming paper of the second and third authors [LZ10], these methods
are applied to the study of the “critical-slope” L-function attached to an ordinary
modular form (corresponding to the non-unit Frobenius eigenvalue).

1.3. Setup and notation.
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1.3.1. Fontaine rings. We review the definitions of the Fontaine rings we use in this
paper. Details can be found in [Ber04] or [LLZ10].

Throughout this paper, p is an odd prime. If K is a number field or a local field
of characteristic 0, then GK denotes its absolute Galois group and OK the ring of
integers of K. We write Γ for the Galois group Gal(Q(µp∞)/Q), which we identify
with Z×p via the cyclotomic character χ. Then Γ ∼= ∆ × Γ1, where ∆ is of order
p− 1 and Γ1

∼= Zp. We fix a topological generator γ of Γ1.
We write B+

rig,Qp for the ring of power series f(π) ∈ Qp[[π]] such that f(X)

converges everywhere on the open unit p-adic disc. Equip B+
rig,Qp with actions of Γ

and a Frobenius operator ϕ by g.π = (π + 1)χ(g) − 1 and ϕ(π) = (π + 1)p − 1. We
can then define a left inverse ψ of ϕ satisfying

ϕ ◦ ψ(f(π)) =
1

p

∑
ζp=1

f(ζ(1 + π)− 1).

Inside B+
rig,Qp , we have subrings A+

Qp = Zp[[π]] and B+
Qp = Qp⊗ZpA

+
Qp . Moreover,

the actions of ϕ, ψ and Γ preserve these subrings. Finally, we write t = log(1+π) ∈
B+

rig,Qp and q = ϕ(π)/π ∈ A+
Qp . A formal power series calculation shows that

g(t) = χ(g)t for g ∈ Γ and ϕ(t) = pt.

1.3.2. Iwasawa algebras and power series. Given a finite extension K of Qp, denote
by ΛOK (Γ) (respectively ΛOK (Γ1)) the Iwasawa algebra Zp[[Γ]]⊗ZpOK (respectively
Zp[[Γ1]]⊗Zp OK) over OK . We further write ΛK(Γ) = Q⊗ΛOK (Γ) and ΛK(Γ1) =
Q ⊗ ΛOK (Γ1). If M is a finitely generated torsion ΛOK (Γ1)-module, we write
CharΛOK (Γ1)(M) for its characteristic ideal.

Let H(Γ) be the space of distributions on Γ (the continuous dual of the space
of locally analytic functions on Γ), with the ring structure defined by convolution.
We may identify this with the space of formal power series

{f ∈ Qp[∆][[X]] : f converges everywhere on the open unit p-adic disc},

where X corresponds to γ − 1. We may identify ΛQp(Γ) with the subring of H(Γ)
consisting of power series with bounded coefficients.

The action of Γ on B+
rig,Qp gives an isomorphism of H(Γ) with (B+

rig,Qp)ψ=0, the

Mellin transform

M : H(Γ)→ (B+
rig,Qp)ψ=0

f(γ − 1) 7→ f(γ − 1) · (π + 1).

In particular, ΛZp(Γ) corresponds to (A+
Qp)ψ=0 under M. Similarly, we defineH(Γ1)

as the subring of H(Γ) defined by power series over Qp, rather than Qp[∆]. Then,
H(Γ1) corresponds to (1 + π)ϕ(B+

rig,Qp) under M, and ΛZp(Γ1) to (1 + π)ϕ(A+
Qp).

(See [PR01, B.2.8] for more details.)
If d is an integer and S is a ΛK(Γ1)-submodule of K⊗QpH(Γ1)⊕d which is free of

rank d, we write det(S) for the determinant of any basis of S, which is well-defined
up to multiplication by a unit of ΛK(Γ1). If F is a homomorphism of ΛK(Γ1)-
modules whose image is a free rank d ΛK(Γ1)-submodule of K ⊗Qp H(Γ1)⊕d, we
write det(F ) for det(Im(F )).
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For an integer i, define

`i =
log(1 +X)

logp(χ(γ))
− i

δi =
`i

X + 1− χ(γ)i

 ∈ H(Γ1).

Note that `i is independent of the choice of generator γ (hence the choice of nor-
malising factor), but δi is not.

Remark 1.5. Note that for any positive integer k, we have

nk = akδk−1 . . . δ0,

where ak = log(χ(γ))k ∈ Zp is nonzero.

The following result slightly refines [Ber03, Lemma II.2].

Proposition 1.6. For any k ≥ 0, we have

M(`k−1 . . . `0H(Γ)) = (tkB+
rig,Qp)ψ=0

M(δk−1 . . . δ0H(Γ)) =

((
t

ϕ(π)

)k
B+

rig,Qp

)ψ=0

.

Proof. One checks easily that `i acts on B+
rig,Qp as the differential operator (1 +

π)t d
dπ − i and hence

`j(t
jf) = tj+1(1 + π)

df

dπ
.

Since (1 + π) d
dπ is an isomorphism on (B+

rig,Qp)ψ=0 (it is the map on distribu-

tions dual to the map f(x) 7→ xf(x) on functions), it follows that each `j maps
(tjB+

rig,Qp)ψ=0 bijectively onto (tj+1B+
rig,Qp)ψ=0.

To prove the corresponding statement for the δi, we note that (B+
rig,Qp/ϕ(π)B+

rig,Qp)ψ=0

is isomorphic to Qp[∆] as a Γ-module. Since t is a uniformiser of the ideal ϕ(π), we
have (ϕ(π)jB+

rig,Qp/ϕ(π)j+1B+
rig,Qp)ψ=0 = (tjB+

rig,Qp/t
jϕ(π)B+

rig,Qp)ψ=0 ∼= Qp[∆](j)

as a Γ-module. Hence its annihilator is X + 1 − χ(γ)j . These factors are mutu-
ally coprime and coprime to δ0 . . . δk−1, and the product is `0 . . . `k−1, so the result
follows.

�

1.3.3. Isotypical components. Let η : ∆ → Z×p be a character. We write eη =

(p − 1)−1
∑
σ∈∆ η−1(σ)σ. If M is a ΛE(Γ)-module, its η-isotypical component is

given by Mη = eηM . When η = 1, we write M∆ in place of Mη.
We identify ΛE(Γ1) with the power series in X = γ−1 with bounded coefficients

in E. Given

F =
∑

σ∈∆,n≥0

aσ,nσ(γ − 1)n ∈ Λ(Γ),

we write F η = eηF for its image in ΛE(Γ)η. In particular,

F η = eη
∑
n≥0

(∑
σ∈∆

aσ,nη(σ)

)
(γ − 1)n ∈ eηΛE(Γ1).
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Therefore, we can identify F η with a power series in X = γ − 1. Under this
identification, the value F η|X=χ(γ)j−1 is given by χjχ−j0 η(F ) where χ0 = χ|∆ for
all j ∈ Z.

1.3.4. Crystalline representations. Let E and F be finite extensions of Qp. Let V
be a crystalline E-linear representation of GQp . We denote the Dieudonné module

of V by Dcris(V ). If j ∈ Z, Filj Dcris(V ) denotes the jth step in the de Rham
filtration of Dcris(V ). We say V is positive if Dcris(V ) = Fil0 Dcris(V ) (following the
standard, but unfortunate, convention that positive representations are precisely
those with non-positive Hodge-Tate weights).

The (ϕ,Γ)-module of V is denoted by D(V ). As shown by Fontaine (unpublished
– for a reference see [CC99, Section II]), we have a canonical isomorphism of ΛE(Γ)-
modules

h1
Iw,V : D(V )ψ=1 → H1

Iw(Qp, V ).

We write expF,V : F ⊗ Dcris(V )→ H1(F, V ) for Bloch-Kato’s exponential over F .
For an integer j, V (j) denotes the jth Tate twist of V , i.e. V (j) = V ⊗ Eej

where GQp acts on ej via χj . We have

Dcris(V (j)) = t−jDcris(V )⊗ ej .

For any v ∈ Dcris(V ), vj = t−jv ⊗ ej denotes its image in Dcris(V (j)).

If h ≥ 1 is an integer such that Fil−h Dcris(V ) = Dcris(V ), we write ΩV,h for the
Perrin-Riou exponential as defined in [PR94].

Let T be an OE-lattice in V which is stable under GQp . We denote the Wach
module of V (respectively T ) by N(V ) (respectively N(T )), a free module of rank
d over B+

Qp (respectively A+
Qp). Recall that Γ acts on both of these objects, and

there is a map ϕ : N(T )[π−1]→ N(T )[ϕ(π)−1], preserving N(T ) if T is positive (and
similarly for V ).

For any j ∈ Z we can identify N(T (j)) with π−jN(T )⊗ ej , where ej is as above.
Given an R-module M with an action of ϕ and a submodule N , ϕ∗N denotes the
R-submodule of M generated by ϕ(N), e.g. ϕ∗N(T ) denotes the A+

Qp -submodule of

N(T )[π−1] generated by ϕ(N(T )). Finally, we write Nrig(V ) = N(V )⊗B+
Qp

B+
rig,Qp .

The following lemma is implicit in the calculations of [LLZ10, §3], but for the
convenience of the reader we give a separate proof:

Lemma 1.7. If the Hodge-Tate weights of V are ≥ 0, then we have

N(T ) ⊆ ϕ∗N(T )

and similarly for N(V ).

Proof. It suffices to prove the result for T . Suppose that the Hodge-Tate weights of
V are in [0,m]. Then N(T ) = π−mN(T (−m)). Since T (−m) is positive, ϕ preserves
N(T (−m)) and N(T (−m))/ϕ∗N(T (−m)) is killed by qm [Ber04, proof of Theorem
III.3.1]. Equivalently, we have

qm · πmN(T ) ⊆ ϕ∗(πmN(T )) = ϕ(π)mϕ∗N(T ).

Since q = ϕ(π)/π, the result follows. �
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1.3.5. Refinements of crystalline representations. Let V be an E-linear crystalline
representation of GQp of dimension d, and let s1 ≤ · · · ≤ sd be the jumps in
the filtration of Dcris(V ), so the Hodge-Tate weights are −si. If Y is an E-linear
subspace of Dcris(V ) of dimension e ≤ d, we say Y is in general position (with

respect to the Hodge filtration) if the intersections Filj Y = Y ∩ Filj Dcris(V ) have
the smallest possible dimension; that is,

dim Filj Y =

{
dim Filj Dcris(V )− d+ e if dim Filj V ≥ d− e
0 otherwise.

This is equivalent to the requirement that the jumps of the filtration Filj Y are
s1, . . . , se.

As in [BC09, §2.4.1], we define a refinement of V to be a family Y = (Yi)
d
i=1 of

E-linear subspaces of Dcris(V ) stable under ϕ, with 0 ( Y1 ( · · · ( Yd = Dcris(V ),
so dimE Yi = i. It is clear that refinements exist if and only if the eigenvalues of ϕ
on Dcris(V ) lie in E.

We say that the refinement is non-critical if each of the subspaces Yi is in general
position, or equivalently if Yi ∩ Filsi+1 Dcris(V ) = 0 for all i.

(If the Hodge-Tate weights of V are distinct, as is assumed in [BC09], then this
is equivalent to the assertion that Dcris(V ) = Yi⊕Filsi+1 Dcris(V ) for each i, which
is the definition given in Definition 2.4.5 of op.cit.)

Proposition 1.8. If the eigenvalues of Frobenius on Dcris(V ) lie in E, and either
d = 2 or ϕ acts semisimply on Dcris(V ), then there exists a non-critical refinement
of V .

Proof. As noted in [BC09, Remark 2.4.6(iii)], the case where ϕ acts semisimply is
obvious: any basis of eigenvectors of Dcris(V ) defines d! refinements, one for each
ordering of the basis vectors, and it is easy to see that we can choose an ordering
such that the resulting refinement is non-critical. Hence let us assume that V is
2-dimensional and ϕ acts non-semisimply on Dcris(V ). Thus Dcris(V ) has a basis
(e1, e2) such that ϕ(e1) = αe1 and ϕ(e2) = e1 + α(e2), for some α ∈ E×. By
twisting, we may assume that the jumps in the Hodge filtration are 0 and s with
s ≥ 0. Let N be the valuation of α; the Newton and Hodge numbers of Dcris(V )
are tH = s and tN = 2N , so we have s = 2N by weak admissibility.

The unique possible refinement is given by Y1 = Ee1, and this is non-critical
unless s > 0 and Fil1 Dcris(V ) = Y1. If this is the case, then the Newton and Hodge
numbers of Y1 are respectively tH(Y1) = s and tN (Y1) = N , and since s = 2N > N
this contradicts the weak admissibility of Dcris(V ). �

Remark 1.9.

(1) It is shown in [Mil94] that the Tate conjecture implies the semisimplicity
of ϕ on the crystalline cohomology groups of any smooth projective variety
over Fp (or, more generally, on the crystalline realisation of any motive
over Fp); so the hypotheses of the proposition conjecturally hold for all
crystalline representations “arising from geometry”.

(2) For representations of dimension ≥ 3 with non-semisimple Frobenius there
may be no non-critical refinements, as the following counterexample shows.
Let D = Q3

p with its standard basis e1, e2, e3, and let ϕ : D → D be given by

the matrix
(
α 1 0
0 α 1
0 0 α

)
, where α ∈ Zp has valuation 1. We define a filtration
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on D with jumps {0, 1, 2} by Fil0(D) = D, Fil1D = Qpe1 +Qpe3, Fil2D =

Qpe3, Fil3D = 0. Then the only ϕ-stable submodules are Y0 = 0, Y1 =
Qpe1, and Y2 = Qpe1 +Qpe2 and Y3 = D. The Hodge and Newton numbers
are given by

i tH(Yi) tN (Yi)
1 1 1
2 1 2
3 3 3

so D is a weakly admissible filtered ϕ-module; and the unique refinement of
D is (Yi)i=0,...,3, but Y1 is not in general position.

1.3.6. Modular forms. Let f(z) =
∑
ane

2πinz be a normalised new eigenform of
weight k ≥ 2, level N and nebentypus ε. Write Ff = Q(an : n ≥ 1) for its
coefficient field. Let f̄(z) =

∑
āne

2πinz be the dual form to f , which also has
coefficients in Ff . We assume that p - N and ap is not a p-adic unit, so f is
supersingular at p.

Remark 1.10. We make this assumption in order to save ourselves from doing
the same calculations twice in Section 5; they easily generalise to the ordinary case.

We fix a prime of Ff above p. We denote the completion of Ff at this prime by E
and fix a uniformiser $E . We write Vf for the 2-dimensional E-linear representation
of GQ associated to f from [Del69]. We fix an OE-lattice Tf stable under GQ, which
determines a lattice Tf̄ of Vf̄ . When restricted to GQp , Vf is crystalline and its de
Rham filtration is given by

dimE FiliDcris(Vf ) =

 2 if i ≤ 0
1 if 1 ≤ i ≤ k − 1
0 if i ≥ k

The action of ϕ on Dcris(Vf ) satisfies ϕ2 − apϕ + ε(p)pk−1 = 0. Let us choose a

“good basis” ν1, ν2 of Dcris(Vf ) as in [LLZ10, §3.3]; that is, ν1 spans Fil1 Dcris(Vf )
and ν2 = p1−kϕ(ν1). We also choose a basis ν̄1, ν̄2 of Dcris(Vf̄ ) in the same way. The
isomorphism Vf̄ = V ∗f (1−k) gives a pairing Dcris(Vf )×Dcris(Vf̄ )→ Dcris(E(1−k)) =

E · tk−1e1−k ∼= E. As noted in [LLZ10, §3.4], we have [ν1, ν̄1] = [ν2, ν̄2] = 0 and
[ν2, ν̄1] = −[ν1, ν̄2], and (by scaling) we may assume without loss of generality that
[ν1, ν̄2] = 1.

Unless otherwise stated, we always assume that the eigenvalues of ϕ on Dcris(Vf )
are not integral powers of p and the nebentypus of f is trivial. Our assumption on
the eigenvalues of ϕ allows us to define the Perrin-Riou pairing

Li = L1,(1+π)⊗νi,1 : H1
Iw(Qp, Vf̄ (k − 1))→ H(Γ)

for i = 1, 2 where we have identified Vf (1)∗(1) with Vf̄ (k−1) (see [Lei09, Section 3.2]
or [LLZ10, Section 3.3] for details).

1.3.7. Adequate rings and elementary divisors. Let R be a commutative integral
domain with identity, such that the following conditions hold:

• All finitely generated ideals in R are principal (i.e., R is a Bézout domain).
• R is adequate, i.e. for any a, b ∈ R with a 6= 0, we may write a = a1a2,

where (a1, b) = (1) and (d, b) 6= (1) for every non-unit divisor d of a2.
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Then R is an elementary divisor ring. That is, let M ⊆ N be finitely generated
R-modules such that N ∼= Rd. Then there exists a R-basis n1, . . . , nd of N and
r1, . . . , rd ∈ R (unique up to units of R) such that r1 | · · · | rd and r1n1, . . . , rene,
where e is the largest integer such that re 6= 0, form a R-basis of M . In particular,
we have det(M) = r1 . . . rd. In this case, we write [N : M ] = [N : M ]R =
[r1; · · · ; rd]. When d = 1, we simply write [N : M ] = r1.

If Q is an arbitrary finitely presented R-module, then we may write Q as a
quotient N/M where N is a free module of finite rank and M is a finitely-generated
submodule of N , so the elementary divisors [N : M ]R are defined. It is easy to
check that these are independent of the choice of presentation of Q, and we define
these to be the elementary divisors of Q.

As explained in [Ber02, §4.2], B+
rig,Qp is an adequate Bézout domain and hence an

elementary divisor ring. The same is true of E ⊗Qp B
+
rig,Qp for any finite extension

E of Qp, and of H(Γ1) (which is isomorphic to B+
rig,Qp as an abstract ring).

We will need the following lemma; see [Lan02, Lemma III.7.6].

Lemma 1.11. Let R be an adequate Bézout domain, M a finitely-presented R-
module, and N a submodule of M . Suppose that there is some a ∈ R such that
N ∼= R/a and aM = 0. Then M ∼= N ⊕M/N .

Proof. Let q1, . . . , qr be a set of generators for M/N , with annihilators ai, giving
an isomorphism M/N ∼= ⊕ri=1R/ai. Since aM = 0, each ai divides a. Let pi be an
arbitrary lift of qi; then aipi ∈ N , so aipi = bip0 where p0 is a generator of N and
bi ∈ R/aR. Since aM = 0, we have 0 = (a/ai)aipi = (a/ai)bip0.

Then we must have (a/ai)bi ∈ aR, so abi ∈ aaiR. Since R is an integral domain,
we must have ai | bi, and we may write bi = aici. Thus p′i = pi − cip0 is a lift of
pi such that aip

′
i = aipi − aicip0 = aipi − bip0 = 0. It follows that the subgroup

generated by the p′i maps bijectively to M/N , giving the required splitting. �

A straightforward induction gives the following generalisation:

Corollary 1.12. If M is an R-module with a filtration by submodules 0 = M0 ⊆
M1 ⊆ · · · ⊆ Md = M , and there are elements a1, . . . , ad ∈ R such that for each

i = 1, . . . , d we have Mi/Mi−1
∼= R/ai and aiM ⊆Mi−1, then M ∼=

⊕d
i=1R/ai.

The ring H(Γ) is not a domain; but it is equal to the direct sum of its subrings
eηH(Γ), where eη is the idempotent in Qp[∆] corresponding to the character η :
∆→ Q×p as above. Each of these subrings is isomorphic toH(Γ1), and hence admits

a theory of elementary divisors. If M is a submodule of H(Γ)⊕d, we define the ith
elementary divisor of M to be

∑
η eηa

η
i , where aηi is the ith elementary divisor of

the submodule Mη = eηM ⊆ eηH(Γ) considered as a H(Γ1)-module. In practice
we shall only apply this in situations where M has the form Qp[Γ] ⊗Qp M

′ for an
H(Γ1)-module M , in which case the isotypical components Mη all have the same
elementary divisors.

2. Refinements of crystalline representations and H(Γ)-structure

In this section, we will prove Theorem A. We will do this by working with a
certain filtration of the module Nrig(V ), which is a (ϕ,Γ)-module over B+

rig,Qp ; the

steps in this filtration are (ϕ,Γ)-modules over B+
rig,Qp , but they are not necessarily
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of the form Nrig(W ) for any representation W , so we begin by systematically de-
veloping a theory of such modules. Our approach is very much influenced by the

description of the theory of (ϕ,Γ)-modules over the Robba ring B†rig,Qp given in

[BC09, §2.2].

2.1. Some properties of (ϕ,Γ)-modules over B+
rig,Qp . We define a (ϕ,Γ)-module

over B+
rig,Qp to be a free B+

rig,Qp -module N of finite rank, endowed with semilinear

commuting actions of ϕ and Γ, such that the quotient N/ϕ∗(N ) is annihilated by
some power of q (where q = ϕ(π)/π as above). We define

Dcris(N ) = NΓ.

We equip Dcris(N ) with the filtration defined by

FiliDcris(N ) = {v ∈ Dcris(N ) : ϕ(v) ∈ qiN}.
Let Kn = Qp(µpn) and K∞ =

⋃
nKn. We define

D(n)
dR (N ) =

(
K∞ ⊗Kn Kn[[t]]⊗B+

rig,Qp
N
)Γ

,

where the tensor product is via the embedding B+
rig,Qp ↪→ Kn[[t]] arising from the

fact that
Kn
∼= B+

rig,Qp/ϕ
n−1(q)

and t is a uniformiser of the prime ideal ϕn−1(q). We endow Kn[[t]] with the
obvious semilinear action of Γ, for which this homomorphism is Γ-equivariant, and

the t-adic filtration. Then D(n)
dR (N ) is a filtered Qp-vector space, of dimension ≤ d

where d is the B+
rig,Qp -rank of N (since K∞((t))Γ = Qp [BC09, §2.2.7]); the operator

ϕ gives an isomorphism of filtered Qp-vector spaces D(n)
dR (N )

∼=- D(n+1)
dR (N ) for

each n, and an embedding of filtered Qp-vector spaces Dcris(N ) ↪→ D(1)
dR(N ).

We shall say that N is crystalline if dimQp Dcris(N ) = d, and de Rham if

dimQp D
(n)
dR (N ) = d (for some, and hence all, n ≥ 1). If N is de Rham, we de-

fine the Hodge-Tate weights of N to be the integers r such that Fil−r D(n)
dR (N ) 6=

Fil1−r D(n)
dR (N ) (with multiplicities given by the size of the jump in dimension).

Note that these are necessarily ≤ 0, which is unfortunate but necessary for com-
patibility with the usual definition in the case of Galois representations.

Finally, we define D(n)
Sen(N ) = K∞ ⊗Kn N/ϕn−1(q)N . This is a K∞-vector

space of dimension d, with a semilinear action of Γ. As above, the ϕ operator

gives isomorphisms D(n)
Sen(N ) → D(n+1)

Sen (N ), of K∞-vector spaces with semilinear
Γ-action. (So both DSen(N ) and DdR(N ) are independent of n as abstract objects;
we retain the n in the notation when we are interested in the relation between these
spaces and the original module N .)

Proposition 2.1. Let j ≥ 0, and suppose N is de Rham. Then there is an iso-
morphism of Qp-vector spaces

Filj DdR(N )/Filj+1 DdR(N )
∼=- DSen(N )Γ=χ−j .

Proof. Let us fix an n ≥ 1 and let θ be the reduction map Kn[[t]] → Kn. Then θ
induces a map

D(n)
dR (N )→ D(n)

Sen(N )Γ
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whose kernel is Fil1 DdR(N ) and whose image is a Qp-linear subspace S0 ⊆ DSen(N )Γ.

Similarly, we find that θ ◦ t−j gives an injection Filj DdR(N )/Filj+1 DdR(N ) →
DSen(N )Γ=χ−j , whose image is a Qp-linear subspace Sj .

Since
⊕∞

j=0 Sj has dimension d, it suffices to show that dimQp
⊕∞

j=0 DSen(N )Γ=χ−j ≤
d. This follows from the fact that it is a subspace of (K∞((t))⊗K∞ DSen(N ))

Γ
,

and (as remarked above) K∞((t))) is a field, with K∞((t))Γ = Qp . �

Corollary 2.2. If N is crystalline, then the map

Dcris(N ) = NΓ ϕn- (N/ϕn−1(q)rN )Γ

is surjective for all r ≥ 1 and n ≥ 1, with kernel Filr Dcris(N ).

Proof. Let us define N (n) = K∞⊗Kn Kn[[t]]⊗B+
rig,Qp

N , so (N (n))Γ = DdR(N ). By

hypothesis the map ϕn : Dcris(N ) → D(n)
dR (N ) is an isomorphism of filtered vector

spaces, and the filtration on DdR(N ) is defined by the t-adic filtration of N (n), so
it suffices to show that reduction modulo tr gives a surjection

(N (n))Γ → (N (n)/trN (n))Γ.

We show that for each j, the map (tjN (n))Γ → (tjN (n)/tj+1N (n))Γ is surjective.

Multiplication by t−j gives an isomorphism (tjN (n)/tj+1N (n))Γ → (N (n)/tN (n))Γ=χ−j ;

but N (n)/tN (n) = D(n)
Sen(N ), and by the preceding proposition we know that θ ◦ t−j

gives an isomorphism from Filj DdR(N )/Filj+1 DdR(N ) to D(n)
Sen(N )Γ=χ−j . So the

map (N (n))Γ → (N (n)/trN (n))Γ is a morphism of filtered vector spaces for which
the associated map of graded modules is surjective. Since the domain and codomain
are finite-dimensional and their filtrations are separated, the original map is itself
surjective. �

Let us write M = B+
rig,Qp ⊗Qp Dcris(N ) ⊆ N .

Proposition 2.3. If N is crystalline and Γ acts trivially on N/πN , then the
elementary divisors of N/M are(

t
π

)s1
, . . . ,

(
t
π

)sd ,
where −s1 ≥ · · · ≥ −sd are the Hodge-Tate weights of N .

Proof. This follows exactly as in [Ber04, Proposition III.2.1]. �

2.2. Quotients of (ϕ,Γ)-modules. We now let N be a (ϕ,Γ)-module over B+
rig,Qp ,

as above. We assume that N is crystalline and Γ acts trivially on N/πN , and
investigate the properties of a certain class of (ϕ,Γ)-modules obtained as quotients
of N . We continue to write M = B+

rig,Qp ⊗Qp Dcris(N ) ⊆ N .

Let Y be a ϕ-stable E-linear subspace of Dcris(N ). We set

Y = B+
rig,Qp ⊗Qp Y ⊆M.

and

X = N ∩ Y
[(

t
π

)−1
]

= {x ∈ N :
(
t
π

)m
x ∈ Y for some m} ⊆ N .

Proposition 2.4. The spaces Y,Y,X have the following properties:

(a) X is a B+
rig,Qp-submodule of N stable under ϕ and Γ;

(b) X = {x ∈ N : ax ∈ Y for some nonzero a ∈ B+
rig,Qp} (the saturation of Y);
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(c) X is free of rank dimQp Y as an B+
rig,Qp-module;

(d) Y = X ∩ Dcris(N ) and Y = X ∩M;
(e) X and W = N/X are (ϕ,Γ)-modules over B+

rig,Qp .

Proof. Part (a) is immediate from the definition.
For (b), suppose x ∈ N and there is some nonzero a ∈ B+

rig,Qp such that ax ∈ Y.

By Proposition 2.3, we can find m such that
(
t
π

)m
x ∈ M, and a

(
t
π

)m
x ∈ Y.

Since Y is clearly saturated in M, we deduce that
(
t
π

)m
x ∈ Y, and hence x ∈ X

as required.
For part (c), we note that X is a closed submodule ofN , since it is the intersection

of the closed submodules
(
t
π

)−N Y and N of
(
t
π

)−N N , for any sufficiently large
N . (It suffices to take N larger than sd, where −sd is the lowest Hodge-Tate weight

of N .) Hence X is also a free module, of finite rank. As X
[(

t
π

)−1
]

is clearly free

of rank dimQp Y as a B+
rig,Qp

[(
t
π

)−1
]
-module, the rank of X over B+

rig,Qp must also

be equal to dimQp Y .
For part (d), it is clear that Y ⊆ X ∩M; and this inclusion is an equality, since

M/Y is torsion-free and X/Y is torsion. Since Y ∩ Dcris(N ) = Y , the statement
follows.

For the final statement (e), since X andW = N/X are both free B+
rig,Qp -modules

with semilinear actions of ϕ and Γ, it suffices to check that X/ϕ∗X andW/ϕ∗W are
annihilated by a power of q. Since X is saturated in N , and B+

rig,Qp is an elementary

divisor ring, we can find a B+
rig,Qp -basis n1, . . . , nd of N such that n1, . . . , nr is a

basis of X and the images of nr+1, . . . , nd are a basis of W, where r = dimQp Y .

Since X is ϕ-stable, the matrix of ϕ in this basis is of the form

(
A B
0 C

)
. Hence

we have det(ϕ∗N ) = det(A) det(C). As N/ϕ∗N is annihilated by a power of q,
det(ϕ∗N ) is a power of q, and thus the same is true of det(A) and det(C). Since A
and C are the matrices of ϕ on X andW in the bases described above, the modules
X/ϕ∗X and W/ϕ∗W are also annihilated by a power of q, as required. �

Let W = Dcris(N )/Y , and (as above) let W = N/X . The natural map W ↪→
Dcris(W) is injective, by part (d) of the preceding proposition; hence it is also
surjective, for reasons of dimension. Thus W is a crystalline (ϕ,Γ)-module and
Dcris(W) = W .

Proposition 2.5. The quotient filtation Fil•W induced on W by the filtation of
Dcris(N) agrees with the filtation Fil given by

FilrW = {w ∈W : ϕ(w) ∈ qrW}.

Proof. It is clear from the definition that FilrW ⊆ FilrW .
Conversely, let y ∈ Dcris(N) such that [y] ∈ FilrW , so we can write ϕ(y) =

qry′ + z for some y′ ∈ N and z ∈ X . Then

z mod qrX ∈ (X/qrX )Γ.

Applying Corollary 2.2 to X , we find that z is congruent modulo qr to an element
of XΓ = Y . �
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The final result we will need about these quotients is the following slightly fiddly
lemma. Let us suppose that the jumps in the filtration of Dcris(N ), with multiplic-
ity, are s1 ≤ s2 · · · ≤ sd (i.e. the Hodge-Tate weights of N are −si). We say that
the ϕ-stable subspace Y is in general position (with respect to the Hodge filtration
of Dcris(N )) if the jumps in the filtration Fil• Y are s1, . . . , sj , where j = dimQp Y .

Lemma 2.6. If Y is in general position, then for any m ≥ sd, we have(
t
π

)m−s(j+1)M⊆
(
t
π

)mN + Y.

Proof. As remarked above, the quotient module W = N/X is a crystalline (ϕ,Γ)-
module over B+

rig,Qp of rank d − j, with Γ acting trivially modulo π. By proposi-

tion 2.5, the Hodge-Tate weights of W are exactly {−s(j+1), . . . ,−sd}; hence its

Γ-invariants lie in
(
t
π

)s(j+1)W. This is equivalent toM⊆
(
t
π

)s(j+1) N +X . Multi-

plying by ( tπ )m−s(j+1) , we see that(
t
π

)m−s(j+1)M⊆
(
t
π

)mN +
(
t
π

)m−s(j+1) X .

Since both
(
t
π

)m−s(j+1)M and
(
t
π

)mN are manifestly contained in M, we may
replace the last term with its intersection with M, which is clearly contained in
X ∩M = Y. �

2.3. Application to crystalline representations. Let V be a d-dimensional
crystalline representation of GQp with Hodge-Tate weights {−s1, . . . ,−sd}, where
0 ≤ s1 ≤ · · · ≤ sd (so V is positive in the sense of §1.3.4 above). As above, we define
Nrig(V ) = B+

rig,Qp ⊗B+
Qp

N(V ), where N(V ) is the Wach module of V as constructed

in [Ber04]. Then Nrig(V ) is a crystalline (ϕ,Γ)-module over B+
rig,Qp with Γ acting

trivially modulo π, and Dcris(V ) is isomorphic (as a filtered ϕ-module over Qp)
to Dcris(Nrig(V )) as defined in the previous section [Ber04, Theorems II.2.2 and
III.4.4].

If V is in fact an E-linear representation, for E some finite extension of Qp,
then Nrig(V ) is naturally an E ⊗Qp B+

rig,Qp -module, and Dcris(V ) is a filtered E-

vector space. If we choose an E-linear ϕ-stable subspace, then all of the above
constructions commute with the additional E-linear structure.

We shall suppose that V admits a non-critical refinement, and fix a choice of such
a refinement Y . Applying the above theory to each of the subspaces Yi, we obtain
E ⊗Qp B

+
rig,Qp -submodules Yi = B+

rig,Qp ⊗Qp Yi ⊆M and Xi = Ysat
i of Nrig(V ).

Let us consider the representation V (m), for somem ≥ sd. This has non-negative
Hodge-Tate weights {m− si}i=1,...,d. If em denotes a basis of Qp(m), then we have

Dcris(V (m)) = {t−mx⊗ em : x ∈ Dcris(V )},
Nrig(V (m)) = {π−my ⊗ em : y ∈ Nrig(V )}.

We define Ai = {π−my ⊗ em : y ∈ Xi} and Bi = {t−mx⊗ em : x ∈ Yi}.

Proposition 2.7. For each i = 1, . . . , d,

(a) ( tπ )m−siBi ⊇ Ai ⊇ ( tπ )m−s1Bi;
(b) Bi is the saturation of Ai in Bd = B+

rig,Qp ⊗ Dcris(V (m));

(c) The inclusion Ad ↪→ Bd identifies Ad/Ai−1 with a submodule of Bd/Bi−1

and the quotient is annihilated by ( tπ )m−si .
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Proof. The chain of inclusions in (a) is equivalent to ( tπ )s1Xi ⊇ Yi ⊇ ( tπ )siXi, which
follows from Propostion 2.3 since the Hodge-Tate weights of Xi are {−s1, . . . ,−si}.
Moreover, Bi is manifestly saturated in Bd (being the base extension of a subspace
of Dcris(V (m))), and together with (a), this proves (b). For part (c), we note that
Ad ∩Bi−1 = Ai−1, so the given map is well-defined and injective; to show that the
annihilator is as claimed, we must check that

( tπ )m−siBd ⊆ Bi−1 +Ad,
which is equivalent to Lemma 2.6. �

We now pass from the “additive” to the “multiplicative” situation. Let us define

Ãi =
⊕p−1

s=1(1 + π)sϕ(Ai), and similarly for B̃i. Note that these are Γ-stable, since

Γ and ϕ commute. Moreover, the action of Γ on B̃d clearly extends to an action of
the ring H(Γ), which is continuous with respect to the Fréchet topologies of H(Γ)

and B̃d. As the submodules B̃i and Ãi are all clearly closed and Γ-invariant, they
also inherit a Fréchet topology and a continuous action of H(Γ).

Remark 2.8. Note that we can define an operator ψ : Bd → Bd which is ϕ−1 on
Dcris(V ) and is B+

rig,Qp-semilinear (for the usual definition of ψ acting on B+
rig,Qp).

Then Ãi = (ϕ∗Ai)ψ=0, where ϕ∗Ai is the B+
rig,Qp-submodule of Bi generated by

ϕ(Ai). Clearly we have ϕ∗(Bi) = Bi for all i, and B̃i = (ϕ∗Bi)ψ=0
= Bψ=0

i .

Lemma 2.9. For each i = 1, . . . , d, these spaces have the following properties:

(a) Ãi ⊆ B̃i.
(b) Ãd ∩ B̃i = Ãi.
(c) The quotient B̃d/(B̃i−1 + Ãd) is annihilated by nm−si .

(d) The quotient B̃i/(B̃i−1 + Ãi) is cyclic as a H(Γ)-module, generated by (1 +
π)ϕ(vi), and its annihilator is nm−si .

Proof. Parts (a) and (b) are clear from the corresponding statements for the spaces
Ai and Bi. For part (c), we note that Bd/Bi−1 is isomorphic as a (ϕ,Γ)-module
over B+

rig,Qp to the tensor product

B+
rig,Qp ⊗Qp (Yd/Yi−1)

with Γ acting trivially on the latter factor and the ϕ-action multiplied by p−m. By
Proposition 1.6, we have

nk · (Bd/Bi−1)ψ=0 =

((
t

ϕ(π)

)k
Bd/Bi−1

)ψ=0

.

Since Bd/(Bi−1+Ad) is annihilated by
(
t
π

)m−si
, we deduce that Bd/(Bi−1+ϕ∗Ad) is

annihilated by
(

t
ϕ(π)

)m−si
. Hence, by the displayed formula above, B̃d/(B̃i−1+Ãd)

is annihilated by the ideal nm−si of H(Γ1).

Similarly, Bi/(Bi−1 +Ai) has the single elementary divisor
(
t
π

)m−si
(by applying

Proposition 2.3 to Xi/Xi−1, which is a (ϕ,Γ)-module over B+
rig,Qp by Proposition

2.4(e)). Hence we deduce that nm−si is the exact annihilator of the corresponding

H(Γ)-module B̃i/(B̃i−1 + Ãi). �

We are now in a position to complete the proof of Theorem A.
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Theorem 2.10 (Theorem A). Let W be any E-linear crystalline representation of
GQp with non-negative Hodge-Tate weights r1 ≤ · · · ≤ rd. Suppose that there exists
a finite extension F of E such that V ⊗E F admits a non-critical refinement. Then
the E ⊗H(Γ)-elementary divisors of the quotient

(B+
rig,Qp)ψ=0 ⊗ Dcris(W )/(ϕ∗Nrig(W ))ψ=0

are [nr1 ; . . . ; nrd ].

Proof. Let us choose an m such that V = W (−m) is positive. Then the Hodge-Tate
weights of V are −s1 ≥ · · · ≥ −sd, where si = m− rd+1−i ≥ 0. Suppose first that
V admits a non-critical refinement. Choosing such a refinement, we may argue as
above to deduce that the E ⊗H(Γ)-module

M = (B+
rig,Qp)ψ=0 ⊗ Dcris(W )/(ϕ∗Nrig(W ))ψ=0 = Bd/Ad

has a filtration by E ⊗Qp H(Γ)-modules Mi = Bi/Ai where Mi/Mi−1 is cyclic with
annihilator nm−si , and nm−si annihilates M/Mi−1. So for each character η of ∆,
the module Mη is an H(Γ1)-module of the type covered by Corollary 1.12. This
gives the result in this special case.

If V only admits a non-critical refinement after extending scalars to an exten-
sion F/E, then we may consider the representation V ⊗E F and apply the above
argument to this representation. It is clear that if M is any E⊗H(Γ)-module, then
the elementary divisors of F ⊗E M as a F ⊗H(Γ)-module are the base extensions
of the elementary divisors of M ; by uniqueness, this gives the proposition. �

We now briefly explain how ϕ∗Nrig(V ) is related to the Wach module N(V )
considered in our earlier work. Note that H(Γ) and ϕ(B+

rig,Qp) are both Fréchet-

Stein algebras in the sense of [ST03] (by Theorem 5.1 of op.cit.); hence any finite-
rank free module over either one of these algebras has a canonical topology, and
a submodule of such a module is finitely-generated if and only if it is closed in
this topology (Corollary 3.4(ii) of op.cit.). Moreover, (B+

rig,Qp)ψ=0 =
⊕p−1

i=1 (1 +

π)iϕ(B+
rig,Qp) is a free module over ϕ(B+

rig,Qp) of rank p− 1.

Proposition 2.11. There is an isomorphism

(ϕ∗Nrig(V ))ψ=0 ∼= H(Γ)⊗ΛQp (Γ) (ϕ∗N(V ))ψ=0.

Proof. We first note that (ϕ∗Nrig(V ))ψ=0 =
⊕p−1

i=1 (1 + π)iϕ(Nrig(V )) is a finitely-

generated ϕ(B+
rig,Qp)-submodule of Dcris(V )⊗Qp (B+

rig,Qp)ψ=0. Hence it is closed in

the canonical Fréchet topology of the latter space. It is also Γ-stable. Since the
Mellin transform is a topological isomorphism between (B+

rig,Qp)ψ=0 and H(Γ), we

see that (ϕ∗Nrig(V ))ψ=0 is a closed Γ-stable subspace of a finite-rank free H(Γ)-
module; hence the action of Γ extends to a (continuous) action of H(Γ). So there
is a natural embedding of H(Γ)⊗ΛQp (Γ) (ϕ∗N(V ))ψ=0 into (ϕ∗Nrig(V ))ψ=0.

The image of this embedding is a H(Γ)-submodule, which is finitely-generated,
since (ϕ∗N(V ))ψ=0 is finitely-generated as a ΛE-module [LLZ10, Theorem 3.5].
So it is closed. On the other hand, the image contains (ϕ∗N(V ))ψ=0. Since we
evidently have

(ϕ∗Nrig(V ))ψ=0 =

p−1⊕
i=1

(1 + π)iϕ(Nrig(V ))
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and ϕ(Nrig(V )) = ϕ(B+
rig,Qp)⊗ϕ(B+

Qp ) ϕ(N(V )), it follows that

(ϕ∗Nrig(V ))ψ=0 = ϕ(B+
rig,Qp)⊗ϕ(B+

Qp )

(
p−1⊕
i=1

(1 + π)iϕ(N(V ))

)
= ϕ(B+

rig,Qp)⊗ϕ(B+
Qp ) (ϕ∗N(V ))ψ=0.

As ϕ(B+
Qp) is dense in ϕ(B+

rig,Qp), it follows that (ϕ∗N(V ))ψ=0 is dense in (ϕ∗Nrig(V ))ψ=0.

Thus the image of H(Γ)⊗ΛQp (Γ) (ϕ∗N(V ))ψ=0 in (ϕ∗Nrig(V ))ψ=0 is both dense and

closed; hence it is everything. �

We recall the following result from our previous work:

Theorem 2.12 ([LLZ10, Lemma 3.15]). (ϕ∗N(V ))ψ=0 is a free ΛE(Γ)-module of
rank d. More specifically, for any basis ν1, . . . , νd of Dcris(V ), there exists a E⊗B+

Qp-

basis n1, . . . , nd of N(V ) such that ni = νi mod π and (1+π)ϕ(n1), . . . , (1+π)ϕ(nd)
form a ΛE(Γ)-basis of (ϕ∗N(V ))ψ=0.

Combining this with Proposition 2.11, the following corollary is immediate:

Corollary 2.13. (ϕ∗Nrig(V ))ψ=0 is a free E ⊗ H(Γ)-module of rank d. More
specifically, for any basis ν1, . . . , νd of Dcris(V ), there exists a E ⊗ B+

rig,Qp-basis

n1, . . . , nd of Nrig(V ) such that ni = νi mod π and (1 + π)ϕ(n1), . . . , (1 + π)ϕ(nd)
form a E ⊗H(Γ)-basis of (ϕ∗Nrig(V ))ψ=0.

Remark 2.14. It seems reasonable to conjecture that for any E ⊗ B+
rig,Qp-basis

m1, . . . ,md of Nrig(V ), the vectors (1+π)ϕ(mi) are a E⊗H(Γ)-basis of (ϕ∗Nrig(V ))ψ=0,
and similarly for N(V ); but we do not know a proof of this statement.

3. The construction of Coleman maps

3.1. Coleman maps and the Perrin-Riou p-adic regulator. Let E be a finite
extension of Qp. Let V be a d-dimensional E-linear representation of GQp with non-
negative Hodge-Tate weights r1 ≤ r2 ≤ · · · ≤ rd. We assume that V has no quotient
isomorphic to the trivial representation. Let T be a GQp -stable OE-lattice in V .
Under these assumptions, there is a canonical isomorphism of ΛOE (Γ)-modules

h1
Iw : N(T )ψ=1

∼=- H1
Iw(Qp, T ).

by [Ber03, Theorem A.3]. Moreover, since the Hodge-Tate weights of V are non-
negative, we have N(T ) ⊆ ϕ∗N(T ) by Lemma 1.7. Hence there is a well-defined
map 1− ϕ : N(T )→ ϕ∗N(T ), which maps N(T )ψ=1 to (ϕ∗N(T ))ψ=0.

As we recalled above, [LLZ10, Theorem 3.5] (due to Laurent Berger) shows
that for some basis n1, . . . , nd of N(T ) as an OE ⊗ A+

Qp -module, the vectors (1 +

π)ϕ(n1), . . . , (1 + π)ϕ(nd) form a basis of (ϕ∗N(T ))ψ=0 as a ΛOE (Γ)-module. This
basis gives an isomorphism

J : (ϕ∗N(T ))ψ=0
∼=- ΛOE (Γ)⊕d

(the Iwasawa transform), and we define the Coleman map

Col = (Coli)
d
i=1 : N(T )ψ=1 → ΛOE (Γ)⊕d

as the composition J ◦ (1− ϕ).
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Remark 3.1. This direct definition of the Coleman map is equivalent to that given
in our earlier work, but applies to any representation with non-negative Hodge-Tate
weights, rather than starting with a positive representation and twisting by the sum
of its Hodge-Tate weights as in [LLZ10].

Let ν1, . . . , νd be a basis of Dcris(V ), so (1 + π)⊗ ν1, . . . , (1 + π)⊗ νd are a basis
of (B+

rig,Qp)ψ=0⊗Dcris(V ) as an H(Γ)-module; and let n1, . . . , nd be a basis of N(V )

lifting ν1, . . . , νd as in Theorem 2.12. Then there exists a unique d × d matrix M
with entries in H(Γ) such that

(1)

(1 + π)ϕ(n1)
...

(1 + π)ϕ(nd)

 = M ·

(1 + π)⊗ ν1

...
(1 + π)⊗ νd

 .

In fact M is defined over H(Γ1), since the ni lie in (1 + π)ϕ(N(V )) ⊆ (1 +
π)ϕ(B+

rig,Qp) ⊗ Dcris(V ). By Theorem 2.10, we know that the elementary divisors

of M are nr1 , . . . , nrd .

Corollary 3.2. Up to a unit, det(M) is equal to
∏d
i=1 nri .

We can write the Coleman map Col in terms of M as follows:

Lemma 3.3. For x ∈ N(T )ψ=1, we have

(1− ϕ)(x) = Col(x) ·M ·

(1 + π)⊗ ν1

...
(1 + π)⊗ νd

 .

Proof. We have by definition

(1− ϕ)x = Col(x) ·

(1 + π)ϕ(n1)
...

(1 + π)ϕ(nd)

 .

Therefore, we are done on combining this with (1). �

Definition 3.4. The Perrin-Riou p-adic regulator LV for V is defined to be the
ΛE(Γ)-homomorphism(

M−1 ⊗ 1
)
◦ (1− ϕ) ◦

(
h1

Iw,V

)−1
: H1

Iw(Qp, V ) - H(Γ)⊗ Dcris(V ).

Using the isomorphism h1
Iw,V : N(V )ψ=1 → H1

Iw(Qp, V ), we can thus rewrite
Lemma 3.3 as

(2) LV (z) =
(
Col ◦(h1

Iw,V )−1
)

(z) ·M ·

ν1

...
νd

 .

4. Images of the Coleman maps

Let η be a character on ∆. In this section, we study the image of Colη(N(V )ψ=1)
as a subset of ΛE(Γ1)⊕d for a crystalline representation V of dimension d with non-
negative Hodge-Tate weights. We then consider the projection of this image, giving
a description of Im(Colηi ) for i = 1, . . . , d.
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4.1. Preliminary results on ΛE(Γ1)-modules. Recall that we identify ΛE(Γ1)
with the power series ring E ⊗OE [[X]] by identifying γ − 1 with X. Therefore, if
F ∈ ΛE(Γ1) and x is an element of the maximal ideal of E, F |X=x ∈ E.

Lemma 4.1. Let V be an E-subspace of Ed with codimension n. For a fixed
element x of the maximal ideal of E, we define the ΛE(Γ1)-module

S =
{

(F1, . . . , Fd) ∈ ΛE(Γ1)⊕d : (F1(x), . . . , Fd(x)) ∈ V
}
.

Then, S is free of rank d over ΛE(Γ1) and det(S) = (X − x)n.

Proof. Let v1, . . . , vd be a basis of E such that
∑d
i=1 eivi ∈ V if and only if ei = 0

for all i > d − n. On multiplying elementary matrices in GLd(E) if necessary, we
may assume that S is of the form

S =
{

(F1, . . . , Fd) ∈ ΛE(Γ1)⊕d : Fd−n+1(x) = · · · = Fd(x) = 0
}

= ΛE(Γ1)⊕(d−n) ⊕
(
(X − x)ΛE(Γ1)

)⊕n
,

so we are done. �

Proposition 4.2. Let I = {x0, . . . , xm} be a subset of the maximal ideal of E. For
each i = 0, . . . ,m, let Vi be an E-subspace of E⊕d with codimension ni. Define

S =
{

(F1, . . . , Fd) ∈ ΛE(Γ1)⊕d :
(
F1(xi), . . . , Fd(xi)

)
∈ Vi, i = 0, . . . ,m

}
,

then S is free of rank d over ΛE(Γ1), and det(S) =
∏m
i=0(X − xi)ni .

Proof. We prove the result by induction on m. The case m = 0 is just Lemma 4.1.
Assume that m > 0 and let

S′ =
{

(F1, . . . , Fd) ∈ ΛE(Γ1)⊕d : (F1(xi), . . . , Fd(xi)) ∈ Vi, i = 0, . . . ,m− 1
}
.

By induction, S′ is free of rank d over ΛE(Γ1) and det(S′) =
∏m−1
i=0 (X −xi)ni . Let

F (i) =
(
F

(i)
1 , . . . , F

(i)
d

)
, i = 1, . . . , d, be a ΛE(Γ1)-basis of S′. Write Fm for the

d× d matrix with entries F
(i)
j (xm). As X − xm does not divide det(F

(i)
j ), we have

Fm ∈ GLd(E). Define

S′′ =
{

(G1, . . . , Gd) ∈ ΛE(Γ1)⊕d : (G1(xm), . . . , Gd(xm)) ∈ VmF−1
m

}
.

By Lemma 4.1, S′′ is free of rank d over ΛE(Γ1) and det(S′′) = (X − xm)nm . Say,

(G
(k)
1 , . . . , G

(k)
d ), k = 1, . . . , d, is a basis.

For (G1, . . . , Gd) ∈ ΛE(Γ1)⊕d, we have
∑d
i=1GiF

(i) ∈ S′ ⊂ S by definition. It is

easy to check that
∑d
i=1GiF

(i) ∈ S if and only if (G1, . . . , Gd) ∈ S′′. Therefore, a

basis for S is given by the row vectors of (G
(k)
i )(F

(i)
j ) and det(S) = det(S′) det(S′′).

Hence, we are done. �

Lemma 4.3. If S is a ΛE(Γ1)-module as described in the statement of Propo-
sition 4.2, then the image of a projection from S into ΛE(Γ1) is of the form∏
i∈J(X − xi)ΛE(Γ1) where J is some subset of {0, . . . ,m}.

Proof. We consider the first projection pr1 : (F1, . . . , Fd) 7→ F1. Let

J = {i ∈ [0,m] : (e1, . . . , ed) ∈ Vi ⇒ e1 = 0}.
It is clear that Im(pr1) ⊂

∏
i∈J(X−xi)ΛE(Γ1). It remains to show that

∏
i∈J(X−

xi) ∈ Im(pr1).
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By definition, for each i /∈ J , there exist e
(i)
k ∈ E, k = 2, . . . , d, such that∏

j∈J
(xi − xj), e(i)

2 , . . . , e
(i)
d

 ∈ Vi.
Similarly, take any (0, e

(i)
2 , . . . , e

(i)
d ) ∈ Vi for i ∈ J . There exist polynomials Fk over

E such that Fk(xi) = e
(i)
j for k = 2, . . . , d and i = 0, . . . ,m. It is then clear that(∏

i∈J
(X − xi), F2, . . . , Fd

)
∈ S.

Hence we are done. �

4.2. On the image of the Perrin-Riou p-adic regulator. Let V be a d-
dimensional E-linear crystalline representation of GQp with non-negative Hodge-
Tate weights r1 ≤ · · · ≤ rd.

Definition 4.4. For an integer i ≥ 0, we write

ni = dimE Fil−i Dcris(V ) = #{j : rj ≤ i}.

We make the following assumption:

Assumption 4.5. The eigenvalues of ϕ on Dcris(V ) are not integer powers of p.

Recall that we have the Perrin-Riou exponential map (c.f. [PR94])

ΩV,rd : (B+
rig,Qp)ψ=0 ⊗ Dcris(V )→ H(Γ)⊗H1

Iw(Qp, V ).

The Perrin-Riou p-adic regulator is related to ΩV,rd via the following equation.

Theorem 4.6. As maps on H1
Iw(Qp, V ), we have

LV =
(
M−1 ⊗ 1

)(rd−1∏
i=0

`i

)
(ΩV,rd)

−1
.

Proof. By definition, this is the same as saying

(1− ϕ) ◦
(
h1

Iw,V

)−1
=

(
rd−1∏
i=0

`i

)
(ΩV,rd)

−1
,

which is just a rewrite of [Ber03, Theorem II.13]. �

Corollary 4.7. We have

det(LV ) =

rd−1∏
i=0

(`i)
d−ni .

Proof. The δ(V )-conjecture (see [PR94, Conjecture 3.4.7]) predicts that

det(ΩV,rd) =
∏

i≤rd−1

(`i)
ni .
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As pointed out in [PR94, Proposition 3.6.7], this conjecture is a consequence of
Perrin-Riou’s explicit reciprocity law (Conjecture (Réc) in op.cit.) which is proved
in [Col98, Théorème IX.4.5]. Therefore, Theorem 4.6 implies that

det(LV ) =

(
rd−1∏
i=0

(`i)
d

) ∏
i≤rd−1

(`i)
−ni

 ,

which finishes the proof, since ni = 0 for i < 0. �

Let z ∈ H1
Iw(Qp, V ). Then LV (z) ∈ H(Γ)⊗QpDcris(V ), so we can apply to LV (z)

any character on Γ to obtain an element in Dcris(V ). The following proposition
studies elements obtained in this way when we choose characters of a specific kind.
Recall that we denote by χ the cyclotomic character, and by χ0 the restriction of
χ to ∆.

Proposition 4.8. Let z ∈ H1
Iw(Qp, V ). Then for any integer 0 ≤ i ≤ rd − 1 and

any Dirichlet character δ of conductor pn > 1, we have

(1− ϕ)−1
(
1− p−1ϕ−1

)
χi(LV (z)⊗ tie−i) ∈ Fil0 Dcris(V (−i));(3)

ϕ−n
(
χiδ(LV (z)⊗ tie−i)

)
∈ Qp,n ⊗ Fil0 Dcris(V (−i)).(4)

Proof. We write [ , ] for the pairing

Dcris(V (−i))× Dcris(V
∗(1 + i)) - Dcris(E(1)) = E · t−1e1.

The orthogonal complement of Fil0 Dcris(V (−i)) under [ , ] is Fil0(V ∗(1 + i)). Let
x ∈ Fil0 Dcris(V

∗(1 + i)) and x′ = (1 − ϕ)(1 − p−1ϕ−1)−1x, and write x′−i for

x′ ⊗ tie−i. Then[
(1− ϕ)−1

(
1− p−1ϕ−1

)
χi(LV (z)⊗ tie−i), x

]
=
[
χi(LV (z)⊗ tie−i), x′

]
= χi[LV (z), x′−i],

where the first equality follows from the observation that 1−ϕ and 1− p−1ϕ−1 are
adjoint to each other under the pairing [ , ].

We extend [ , ] to a pairing on

H(Γ)⊗Qp Dcris(V )×H(Γ)⊗Qp Dcris(V
∗(1)) - E ⊗Qp H(Γ)

in the natural way. By Perrin-Riou’s explicit reciprocity law (c.f. [Col98, Théorème
IX.4.5]) and Theorem 4.6, we have

(5)
[
LV (z), x′−i

]
= (−1)rd−1

〈rd−1∏
j=0

`j

 z,ΩV ∗(1),1−rd((1 + π)⊗ x′−i)

〉

where 〈 , 〉 denotes the pairing(
H(Γ)⊗H1

Iw(Qp, V )
)
×
(
H(Γ)⊗H1

Iw(Qp, V ∗(1))
)

- E ⊗H(Γ)

as defined in [PR94, § 3.6]. By [PR94, Lemme 3.6.1(i)], the right-hand side of (5)
in fact equals

(6)

〈
z,

rd−1∏
j=0

`−j

ΩV ∗(1),1−rd((1 + π)⊗ x′−i)

〉
=
〈
z,ΩV ∗(1),1((1 + π)⊗ x′−i)

〉
.
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By an abuse of notation, we let Tw denote the twist map on the H1
Iw’s as well

as the map on H(Γ) that sends any g ∈ Γ to χ(g)g. We have

〈Tw−i(x),Twi(y)〉 = Twi〈x, y〉

for any x and y by [PR94, Lemme 3.6.1(ii)]. Therefore, by combining (5) and (6),
χi[LV (z), x′−i] is equal to the projection of〈

Tw−i(z),Twi
(
ΩV ∗(1),1((1 + π)⊗ x′−i)

)〉
into E. The projection of Twi

(
ΩV ∗(1),1((1 + π)⊗ x′−i)

)
into H1(Qp, V ∗(1 + i)) at

the origin is equal to a scalar multiple of

expQp,V ∗(1+i)

(
(1− p−1ϕ−1)(1− ϕ)−1(x′)

)
(see for example [LLZ10, Proposition 3.19]). But

(1− p−1ϕ−1)(1− ϕ)−1(x′) = x ∈ Fil0 Dcris(V
∗(1 + i))

by definition. Therefore, as expQp,V ∗(1+i) vanishes on Fil0 Dcris(V
∗(1 + i)) by con-

struction, it follows that

expQp,V ∗(1+i)

(
(1− ϕ)−1(1− p−1ϕ−1)(x′)

)
= 0

and hence that[
(1− ϕ)−1

(
1− p−1ϕ−1

)
χi(LV (z)⊗ tie−i), x

]
= χi

[
LV (z), x′−i

]
= 0.

This implies (3), and (4) can be proved similarly. �

For any character η of ∆ and an integer 0 ≤ i ≤ rd − 1, define

Vi,η =

{
(1− piϕ)(1− p−1−iϕ−1)−1 Fil−i Dcris(V ) if χi0 = η

ϕ
(

Fil−iDcris(V )
)

otherwise

Note that Vi,η is a subspace of Dcris(V ) of the same dimension as Fil−iDcris(V ).

Corollary 4.9. If η is a character on ∆, then{
χiχ−i0 η(eηLV (z)) : z ∈ H1

Iw(Qp, V )
}
⊂ Vi,η.

Proof. Note that Fil−iDcris(V ) = Fil0 Dcris(V (−i)) ⊗ t−iei. Therefore, if χi0 = η,
the result follows from (3) and the fact that ϕ(tie−i) = pitie−i. Assume otherwise.
Since χiχ−i0 η|∆ = η, we have χiχ−i0 η(eηLV (z)) = χiχ−i0 η(LV (z)). Hence, (4)
implies that

ϕ−1
(
χiχ−i0 η(eηLV (z)⊗ tie−i)

)
∈ Qp(µp)⊗ Fil0 Dcris(V (−i)).

But χiχ−i0 η(eηLV (z)⊗tie−i) = LV (z)η|X=χ(γ)i−1⊗tie−i in fact lies inside Dcris(V (−i)).
Hence,

ϕ−1
(
χiχ−i0 η(eηLV (z)⊗ tie−i)

)
∈ Fil0 Dcris(V (−i)) = Fil−i Dcris(V )⊗ tie−i

and we are done on applying ϕ to both sides. �

Corollary 4.10. If η is a character on ∆, then{
LV (z)η|X=χ(γ)i−1 : z ∈ H1

Iw(Qp, V )
}
⊂ Vi,η.

Proof. This is immediate from Corollary 4.9 as LV (z)η|X=χ(γ)i−1 = χiχ−i0 η(eηLV (z)).
�
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4.3. Images of the Coleman maps. We now fix a character η : ∆ - Z×p . Let
ν1, . . . , νd be a basis of Dcris(V ) and n1, . . . , nd a basis of N(V ) lifting ν1, . . . , νd as
in Theorem 2.12. We consider the image of the Coleman map defined with respect
to this basis as in Section 3.

Proposition 4.11. The image of the map

Colη : N(V )ψ=1 - ΛE(Γ1)⊕d

lies inside a ΛE(Γ1)-submodule S as described in the statement of Lemma 4.2 with
I = {xi = χ(γ)i − 1 : 0 ≤ i ≤ rd − 1} and Vi = Vi,η, which is an E-vector space of

the same (co-)dimension as Fil−iDcris(V ).

Proof. Recall from (2) that

LV =
(
Col ◦h1

Iw,V

)
M

ν1

...
νd


where M is as defined in (1). Note that Mη = M for any character η of ∆, since
M is defined over H(Γ1). Moreover, Corollary 3.2 implies that X − χ(γ)i + 1
does not divide det(M), so M |X=χ(γ)i−1 ∈ GLd(E). Therefore, we are done by
Corollary 4.10. �

Theorem 4.12. Equality holds in Proposition 4.11.

Proof. Write S for the basis matrix of the ΛE(Γ1)-submodule of ΛE(Γ1)⊕d described
in the statement of Proposition 4.11. Then, Proposition 4.2 says that

det(S) =

rd−1∏
i=0

(X − χ(γ)i + 1)d−ni .

But

det(M) =

d∏
j=1

(
rj−1∏
i=0

`i
X − χ(γ)i + 1

)
=

rd−1∏
i=0

(
`i

X − χ(γ)i + 1

)d−ni
,

since ni = #{j : rj ≤ i}, as noted above. Hence, Corollary 4.7 implies that

det(LV ) = det(M) det(S)

and we are done. �

We can summarize the above results via the following short exact sequence:

Corollary 4.13. Suppose that no eigenvalue of ϕ on Dcris(V ) lies in pZ. Then for
each character η of ∆, there is a short exact sequence of H(Γ1)-modules

0 - N(V )ψ=1,η 1−ϕ- (ϕ∗N(V ))ψ=0,η Aη-
rd−1⊕
i=0

(Dcris(V )/Vi,η)(χiχ−i0 η) - 0.

Here the map Aη =
⊕

i(1⊗Aη,i), where Aη,i is the natural reduction map H(Γ)→
Qp(χiχ−i0 η) obtained by quotienting out by the ideal (X + 1− χ(γ)i) · eη.
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Remark 4.14. The short exact sequence in Corollary 4.13 can be seen as an ana-
logue of Perrin-Riou’s exact sequence (see [PR94, §2.2])

0 -
rd⊕
i=0

tiDcris(V )ϕ=p−i -
(
B+

rig,Qp ⊗ Dcris(V )
)ψ=1

ϕ−1- (B+
rig,Qp)ψ=0 ⊗ Dcris(V ) -

rd⊕
i=0

(
Dcris(V )

1− piϕ

)
(i) - 0.

In particular, the injectivity of the first map in our sequence follows from Perrin-
Riou’s sequence, since our assumption on V implies that the first term of Perrin-
Riou’s sequence vanishes.

We can now prove Theorem C.

Corollary 4.15. For i = 1, . . . , d, we have

Im(Colηi ) =
∏
j∈Iηi

(X − χ(γ)j + 1)ΛE(Γ1)

for some Iηi ⊂ {0, . . . , rd − 1}.

Proof. This follows immediately from Lemma 4.3. �

We can also use this argument to determine the elementary divisors of the cok-
ernel of the map LV , refining the result of Proposition 4.7.

Theorem 4.16. The elementary divisors of the H(Γ)-module quotient

H(Γ)⊗Qp Dcris(V )

H(Γ)⊗ΛQp (Γ) Im(LV )

are [λr1 ; . . . ;λrd ], where λk = `0`1 . . . `k−1.

Proof. We know that the matrix of LV is equal to M · S, where M and S have
elementary divisors that are coprime. Hence the elementary divisors of the product
matrix are the products of the elementary divisors, which gives the above formula.

�

5. The Coleman maps for modular forms

In this section, we fix a modular form f as in Section 1.3.6. We pick bases n1, n2

of N(Tf̄ ) and ν̄1, ν̄2 of Dcris(Vf̄ ) as in [LLZ10, Section 3.3]. Let V = Vf̄ (k − 1),

which has Hodge-Tate weights 0 and k − 1. We consider the Coleman maps Colη1
and Colη2 defined on N(V )ψ=1 where η is a fixed character on ∆. As a special case
for Theorem 4.12 and Corollary 4.15, we have the following result.

Proposition 5.1. There exist 1-dimensional E-subspaces Vi of E2 for 0 ≤ i < k−1
such that

Im(Colη) = {(F,G) ∈ ΛE(Γ1) :
(
F (χi(γ)− 1), G(χi(γ)− 1)

)
∈ Vi}.

Moreover, for l = 1, 2, we have

Im(Colηl ) =
∏
j∈Iηl

(X − χj(γ) + 1)ΛE(Γ1)

for some Iηl ⊂ {0, . . . , k − 2} with Iη1 and Iη2 disjoint.



26 ANTONIO LEI, DAVID LOEFFLER, AND SARAH LIVIA ZERBES

Proof. For 0 ≤ j ≤ k − 2, Fil−j Dcris(V ) is of dimension 1 over E. Hence the first
part of the proposition by Theorem 4.12. The second part of the proposition follows
by putting

Iη1 = {i : Vi = 0⊕ E} and Iη2 = {i : Vi = E ⊕ 0}.
�

Remark 5.2. Note that the second part of the proposition is a slightly stronger
version of Corollary 4.15.

Corollary 5.3. In particular, there exist non-zero elements ri ∈ E for i ∈ Iη3 :=
{0, . . . , k − 2} \ (Iη1 ∪ I

η
2 ) such that

Im(Colη) =

(F,G) ∈ ΛE(Γ1)

∣∣∣∣∣∣∣
F (ui − 1) = 0 if i ∈ Iη1
G(ui − 1) = 0 if i ∈ Iη2
F (ui − 1) = riG(ui − 1) if i ∈ Iη3


where u = χ(γ).

The aim of this section is to study the set above in more detail.

5.1. Some explicit linear relations. Recall from [LLZ10, proof of Proposition 3.22]
that the maps L1 and L2 as defined in Section 1.3.6 satisfy

LV (z) = −L2(z)ν̄1,k−1 + L1(z)ν̄2,k−1

for any z ∈ H1
Iw(Qp, V ). Therefore, Corollary 4.9 says that L1(z) and L2(z) satifsy

some linear relations when evaluated at χjδ for 0 ≤ j ≤ k−2 and δ some character
on ∆. We now make these relations explicit. First we recall that we have:

Lemma 5.4. Let j, n ≥ 0 be integers and i ∈ {1, 2}. For z ∈ H1
Iw(Qp, V ), we write

z−j,n for the image of z under

(7) H1
Iw(Qp, V )→ H1

Iw(Qp, V (−j))→ H1(Qp,n, V (−j))
where the first map is the twist map (−1)j Twj and the second map is the projection.
Then, we have

(8) χj(Li(z)) = j!
[
(1− ϕ)−1(1− p−1ϕ−1)νi,j+1, exp∗Qp,V (j)(z−j,0)

]
.

If δ is a character of Gn which does not factor through Gn−1 with n ≥ 1, then

(9) χjδ(Li(z)) =
j!

τ(δ−1)

∑
σ∈Gn

δ−1(σ)
[
ϕ−n(νi,j+1), exp∗Qp,1,V (j)(z

σ
−j,n)

]
where τ denotes the Gauss sum.

Proof. See for example [Lei09, Lemma 3.5 and (4)]. �

Lemma 5.5. If 0 ≤ j ≤ k − 2 and δ is a non-trivial character on ∆, then
χjδ(L2(z)) = 0.

Proof. On putting n = 1 in (9), we have

χjδ(L2(z)) =
j!

τ(δ−1)

∑
σ∈∆

δ−1(σ)
[
ϕ−1(ν2,j+1), exp∗Qp,1,V (j)(z

σ
−j,1)

]
.

But ν2 = p1−kϕ(ν1), so

ϕ−1(ν2,j+1) ∈ E · ν1,j+1 = Fil0 Dcris(Vf (j + 1)).
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Therefore, we have

[ϕ−1(ν2,j+1), exp∗Qp,1,V (j)(z
σ)] = 0

for all σ ∈ ∆ and we are done. �

Lemma 5.6. If ϕ2 + aϕ+ b = 0, then

(1− ϕ)−1(1− p−1ϕ−1) =
(1 + a+ pb)ϕ+ a(1 + a+ pb) + b(p− 1)

pb(1 + a+ b)
.

Proof. We have

ϕ2 + aϕ+ b = 0

ϕ2 − 1 + a(ϕ− 1) = −1− a− b
(1− ϕ)(ϕ+ 1 + a) = 1 + a+ b.

Therefore,

(1− ϕ)−1 =
ϕ+ 1 + a

1 + a+ b
.

Similarly, we have

ϕ−1 = −ϕ+ a

b
.

The result then follows from explicit calculation. �

Corollary 5.7. For 0 ≤ j ≤ k − 2, we have

(−ap + pj+1 + pk−1−j)χj(L2(z)) = (p− 1)χj(L1(z)).

Proof. On Dcris(Vf̄ (k − 1− j)), ϕ satisfies

ϕ2 − app−k+1+jϕ+ p−k+1+2j = 0,

as we assume ε(p) = 1. Let u = 1 − app−k+1+j + p−k+2+2j , u′ = −app−k+1+ju +
p−k+1+2j(p− 1). Then, Proposition 4.8 and Lemma 5.6 imply that

(uϕ+u′)χj(−L2(z)ν̄1,k−1−j+L1(z)ν̄2,k−1−j) ∈ Fil0 Dcris(Vf̄ (k−1−j)) = Eν1,k−1−j .

On writing the above expression as a linear combination of ν1,k−1−j and ν2,k−1−j ,
the coefficient of the latter turns out to be

−pjuχj(L2(z)) + (u′ + app
−k+1+ju)χr(L1(z)),

which must be zero, hence the result. �

Remark 5.8. The coefficient −ap + pj+1 + pk−1−j is non-zero by the Weil bound.

Recall from [LLZ10, (32)] that we have(
−L2 L1

)
=
(
Col ◦h1

Iw,V

)
M.

By [LLZ10, proof of Proposition 3.28 and Theorem 5.4], we have M |X=0 = ATϕ =(
0 pk−1

−1 ap

)
. Therefore, the relations for j = 0 are given by

(−ap + 1 + pk−2) Col2(x)∆|X=0 = pk−2(p− 1) Col1(x)∆|X=0 if η = 1;

Col2(x)η|X=0 = 0 if η 6= 1.

In particular, for the case k = 2, we have the following analogue of [KP07,
Proposition 1.2].
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Proposition 5.9. If k = 2, the trivial isotypical component of the Coleman maps
give a short exact sequence

0 - H1
Iw(Qp, V )

Col∆- ΛE(Γ1)⊕ ΛE(Γ1)
ρ- Qp - 0,

where ρ is defined by

ρ
(
g(X), h(X)

)
= (2− ap)g(0)− (p− 1)h(0).

5.2. Integral structure of the images. We now describe the integral structure
of Im(Coli)

η. Under the notation of Corollary 5.3, we define

Xη
i =

∏
j∈Iηi

(X − χ(γ)j + 1).

Then, we have:

Theorem 5.10. For i = 1, 2, let Xη
i be as defined above, then Coli

(
D(Tf̄ (k − 1))ψ=1

)η ⊂
Xη
i ΛOE (Γ1). Moreover, Xη

i ΛOE (Γ1)/Coli
(
D(Tf̄ (k − 1))ψ=1

)η
is pseudo-null.

Proof. Let

Xk =

k−2∏
j=0

(X − χ(γ)j + 1).

Note that [LLZ10, proof of Proposition 4.11] is true integrally. We therefore have(
ϕk−1(π)ϕ∗N(Tf̄ (k − 1))

)ψ=0 ⊂ (1− ϕ)N(Tf̄ (k − 1))ψ=1.

This implies that Xk ∈ Im(Coli) for i = 1, 2. Hence, we have the following inclu-
sions:

XkΛOE (Γ1) ⊂ Coli
(
D(Tf̄ (k − 1))ψ=1

)η ⊂ Xη
i ΛOE (Γ1)

for i = 1, 2. Since Xk is not divisible by $E , the quotient

Xη
i ΛOE (Γ1)/XkΛOE (Γ1)

is a free OE-module of finite rank. Moreover, for a coset representative, x say, it
follows from Corollary 4.15 that there exists an integer n such that

$n
Ex ∈ Coli

(
D(Tf̄ (k − 1))ψ=1

)η
.

Therefore, Coli
(
D(Tf̄ (k − 1))ψ=1

)η
is of finite index in Xη

i ΛOE (Γ1). �

5.3. Surjectivity via a change of basis. Unfortunately, we do not have an ex-
plicit description of the sets Iηi given by Corollary 5.3. However, this can be resolved
by choosing a different basis:

Proposition 5.11. Let S be a subset of ΛE(Γ1)⊕2 as defined in Corollary 5.3.
Then, there exists A ∈ GL(2,OE) such that SA = S′ for some S′ which is of the
form {

(F,G) ∈ ΛE(Γ1)⊕2 : F (ui − 1) = r′iG(ui − 1), 0 ≤ i ≤ k − 2
}

for some non-zero elements r′i ∈ E.

Proof. Let e1, e2 ∈ OE be non-zero elements such that e1e2 6= 1, then(
1 e2

e1 1

)
∈ GL(2,OE).
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Let (F,G) ∈ ΛE(Γ1)⊕2, we write
(
F ′ G′

)
=
(
F G

)
A =

(
F + e1G G+ e2F

)
.

We have

F (ui − 1) = 0 ⇐⇒ F ′(ui − 1) = e1G
′(ui − 1);

G(ui − 1) = 0 ⇐⇒ G′(ui − 1) = e2F
′(ui − 1);

F (ui − 1) = riG(ui − 1) ⇐⇒ (e2ri + 1)F ′(ui − 1) = (e1 + ri)G
′(ui − 1).

Therefore, we are done on choosing e2 6= −r−1
i and e1 6= −ri for all i ∈ Iη3 . �

Remark 5.12. In the construction of the Coleman maps, replacing

(
n1

n2

)
by

A

(
n1

n2

)
where A ∈ GL(2,OE) is equivalent to replacing M by AM .

Therefore, on multiplying M by an appropriate matrix in GL(2,OE) on the left,
we can make both Coleman maps surjective (though we cannot assume M |X=0 =
ATϕ any more). By Proposition 5.11, we deduce

Theorem 5.13. There exists a basis of N(Tf̄ ) such that the corresponding Coleman
maps have the following properties:

ΛOE (Γ1)/Coli(D(Tf̄ (k − 1))ψ=1)η

is pseudo-null for i = 1, 2.
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groups, Astérisque 324 (2009), 1–314. MR 2656025.

[Ber02] Laurent Berger, Représentations p-adiques et équations différentielles, Invent. Math.
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