
The Library
Geometric rigidity for analytic estimates of Müller–Šverák
Tools
Nguyen, H. T. (2012) Geometric rigidity for analytic estimates of Müller–Šverák. Mathematische Zeitschrift, Volume 272 (Number 3-4). pp. 1059-1074. doi:10.1007/s00209-011-0974-8 ISSN 0025-5874.
Research output not available from this repository.
Request-a-Copy directly from author or use local Library Get it For Me service.
Official URL: http://dx.doi.org/10.1007/s00209-011-0974-8
Abstract
In the paper Müller–Šverák (J Differ Geom 42(2):229–258, 1995) conformally immersed surfaces with finite total curvature were studied. In particular it was shown that surfaces with total curvature A28 in dimension three were embedded and conformal to the plane with one end. Here, using techniques from Kuwert–Li (W 2,2-conformal immersions of a closed Riemann surface into R n . arXiv:1007.3967v2 [math.DG], 2010), we will show that if the total curvature A28 , then we are either embedded and conformal to the plane, isometric to a catenoid or isometric to Enneper’s minimal surface. In fact the technique of our proof shows that if we are conformal to the plane, then if n ≥ 3 and A216 then Σ is embedded or Σ is the image of a generalized catenoid inverted at a point on the catenoid. In order to prove these theorems, we prove a Gauss–Bonnet theorem for surfaces with complete ends and isolated finite area singularities which extends a theorem of Jorge-Meeks (Topology 22(2):203–221, 1983). Using this theorem, we then prove an inversion formula for the Willmore energy.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Journal or Publication Title: | Mathematische Zeitschrift | ||||
Publisher: | Springer | ||||
ISSN: | 0025-5874 | ||||
Official Date: | 2012 | ||||
Dates: |
|
||||
Volume: | Volume 272 | ||||
Number: | Number 3-4 | ||||
Page Range: | pp. 1059-1074 | ||||
DOI: | 10.1007/s00209-011-0974-8 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |