Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells

Tools
- Tools
+ Tools

Freese, Christian, Uboldi, Chiara, Gibson, Matthew I., Unger, Ronald E., Weksler, Babette B., Romero, Ignacio A., Couraud, Pierre-Olivier and Kirkpatrick, C. J. (C. James) (2012) Uptake and cytotoxicity of citrate-coated gold nanospheres : comparative studies on human endothelial and epithelial cells. Particle and Fibre Toxicology, Vol.9 (No.1). p. 23. doi:10.1186/1743-8977-9-23

[img]
Preview
Text
WRAP_Gibson_art%3A10.1186%2F1743-8977-9-23.pdf - Published Version

Download (741Kb) | Preview
Official URL: http://dx.doi.org/10.1186/1743-8977-9-23

Request Changes to record.

Abstract

The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs is essential. Although generally considered as highly biocompatible, previous in vitro studies have shown that cytotoxicity of AuNPs in certain human epithelial cells was observed. In particular, the degree of purification of AuNPs (presence of sodium citrate residues on the particles) was shown to affect the proliferation and induce cytotoxicity in these cells. To expand these studies, we have examined if the effects are related to nanoparticle size (10, 11 nm, 25 nm), to the presence of sodium citrate on the particles' surface or they are due to a varying degree of internalization of the AuNPs. Since two cell types are present in the major barriers to the outside in the human body, we have also included endothelial cells from the vasculature and blood brain barrier.
Results
Transmission electron microscopy demonstrates that the internalized gold nanoparticles are located within vesicles. Increased cytotoxicity was observed after exposure to AuNPs and was found to be concentration-dependent. In addition, cell viability and the proliferation of both endothelial cells decreased after exposure to gold nanoparticles, especially at high concentrations. Moreover, in contrast to the size of the particles (10 nm, 11 nm, 25 nm), the presence of sodium citrate on the nanoparticle surface appeared to enhance these effects. The effects on microvascular endothelial cells from blood vessels were slightly enhanced compared to the effects on brain-derived endothelial cells. A quantification of AuNPs within cells by ICP-AES showed that epithelial cells internalized a higher quantity of AuNPs compared to endothelial cells and that the quantity of uptake is not correlated with the amount of sodium citrate on the nanoparticles’ surface.
Conclusions
In conclusion the higher amount of citrate on the particle surface resulted in a higher impairment of cell viability, but did not enhance or reduce the uptake behavior in endothelial or epithelial cells. In addition, epithelial and endothelial cells exhibited different uptake behaviors for citrate-stabilized gold nanoparticles, which might be related to different interactions occurring at the nanoparticle-cell-surface interface. The different uptake in epithelial cells might explain the higher reduction of proliferation of these cells after exposure to AuNPs treatment although more detailed investigations are necessary to determine subcellular events. Nevertheless an extrinsic effect of sodium-citrate stabilized particles could not be excluded. Thus, the amount of sodium citrate should be reduced to a level on which the stability of the particles and the safety for biomedical applications are guaranteed.

Item Type: Journal Article
Subjects: Q Science > QD Chemistry
Q Science > QP Physiology
Divisions: Faculty of Science > Chemistry
Library of Congress Subject Headings (LCSH): Gold -- Physiological effect, Gold -- Therapeutic use
Journal or Publication Title: Particle and Fibre Toxicology
Publisher: BioMed Central Ltd.
ISSN: 1743-8977
Official Date: 2012
Dates:
DateEvent
2012Published
Volume: Vol.9
Number: No.1
Page Range: p. 23
DOI: 10.1186/1743-8977-9-23
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Open Access
Funder: Sixth Framework Programme (European Commission) (FP6), Advantage West Midlands (AWM), European Regional Development Fund (ERDF), Higher Education Funding Council for England (HEFCE), Birmingham Science City
Grant number: FP6–2004–NMP–TI4–032731 (FP6)

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item

Downloads

Downloads per month over past year

View more statistics

twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us