
The Library
A model for the behavior of fluid droplets based on mean curvature flow
Tools
Helmensdorfer, Sebastian (2012) A model for the behavior of fluid droplets based on mean curvature flow. SIAM Journal on Mathematical Analysis, Vol.44 (No.3). pp. 1359-1371. doi:10.1137/110824905 ISSN 0036-1410.
|
Text
WRAP_Helmensdorfer_110824905.pdf - Published Version Download (382Kb) | Preview |
Official URL: http://dx.doi.org/10.1137/110824905
Abstract
The authors of [W. D. Ristenpart et al., Nature, 461 (2009), pp. 377–380] have observed the following remarkable phenomenon during their experiments. If two oppositely charged droplets of fluid are close enough, at first they attract each other and eventually touch. Surprisingly after that the droplets are repelled from each other, if the initial strength of the charges is high enough. Otherwise they coalesce and form a big drop, as one might expect. We present a theoretical model for these observations using mean curvature flow. The local asymptotic shape of the touching fluid droplets is that of a double cone, where the angle corresponds to the strength of the initial charges. Our model yields a critical angle for the behavior of the touching droplets, and numerical estimates of this angle agree with the experiments. This shows, contrary to general belief (see [W. D. Ristenpart et al., Nature, 461 (2009), pp. 377–380] and [W. D. Ristenpart et al., Phys. Rev. Lett., 103 (2009), 164502]), that decreasing surface energy can explain the phenomenon. To determine the critical angle within our model, we construct appropriate barriers for the mean curvature flow. In [Comm. Partial Differential Equations, 20 (1995), pp. 1937–1958] Angenent, Chopp, and Ilmanen manage to show the existence of one-sheeted and two-sheeted self-expanding solutions with a sufficiently steep double cone as an initial condition. Furthermore they provide arguments for nonuniqueness even among the one-sheeted solutions. We present a proof for this, yielding a slightly stronger result. Using the one-sheeted self-expanders as barriers, we can determine the critical angle for our model.
Item Type: | Journal Article | ||||
---|---|---|---|---|---|
Subjects: | Q Science > QA Mathematics | ||||
Divisions: | Faculty of Science, Engineering and Medicine > Science > Mathematics | ||||
Library of Congress Subject Headings (LCSH): | Drops -- Mathematical models | ||||
Journal or Publication Title: | SIAM Journal on Mathematical Analysis | ||||
Publisher: | Society for Industrial and Applied Mathematics | ||||
ISSN: | 0036-1410 | ||||
Official Date: | 2012 | ||||
Dates: |
|
||||
Volume: | Vol.44 | ||||
Number: | No.3 | ||||
Page Range: | pp. 1359-1371 | ||||
DOI: | 10.1137/110824905 | ||||
Status: | Peer Reviewed | ||||
Publication Status: | Published | ||||
Access rights to Published version: | Restricted or Subscription Access | ||||
Date of first compliant deposit: | 22 December 2015 | ||||
Date of first compliant Open Access: | 22 December 2015 | ||||
Funder: | Leverhulme Trust (LT) |
Request changes or add full text files to a record
Repository staff actions (login required)
![]() |
View Item |
Downloads
Downloads per month over past year