Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Thermal emission from WASP-24b at 3.6 and 4.5μm

Tools
- Tools
+ Tools

Smith, A. M. S., Anderson, D. R., Madhusudhan, N., Southworth, J., Collier Cameron, A., Blecic, J., Harrington, J., Hellier, C., Maxted, P. F. L., Pollacco, Don, Queloz, D., Smalley, B., Triaud, A. H. M . J. and Wheatley, P. J. (2012) Thermal emission from WASP-24b at 3.6 and 4.5μm. Astronomy & Astrophysics, Vol.545 . A93. doi:10.1051/0004-6361/201219294

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1051/0004-6361/201219294

Request Changes to record.

Abstract

Aims. We observe occultations of WASP-24b to measure brightness temperatures and to determine whether or not its atmosphere exhibits a thermal inversion (stratosphere). Methods. We observed occultations of WASP-24b at 3.6 and 4.5 μm using the Spitzer Space Telescope. It has been suggested that there is a correlation between stellar activity and the presence of inversions, so we analysed existing HARPS spectra in order to calculate log R′ HK for WASP-24 and thus determine whether or not the star is chromospherically active. We also observed a transit of WASP-24b in the Strömgren u and y bands, with the CAHA 2.2-m telescope. Results. We measure occultation depths of 0.159 ± 0.013 per cent at 3.6 μm and 0.202 ± 0.018 per cent at 4.5 μm. The corresponding planetary brightness temperatures are 1974 ± 71 K and 1944 ± 85 K respectively. Atmosphere models with and without a thermal inversion fit the data equally well; we are unable to constrain the presence of an inversion without additional occultation measurements in the near-IR. We find log R′ HK =-4.98 ± 0.12, indicating that WASP-24 is not a chromospherically active star. Our global analysis of new and previously-published data has refined the system parameters, and we find no evidence that the orbit of WASP-24b is non-circular. Conclusions. These results emphasise the importance of complementing Spitzer measurements with observations at shorter wavelengths to gain a full understanding of hot Jupiter atmospheres. © 2012 ESO.

Item Type: Journal Article
Divisions: Faculty of Science > Physics
Journal or Publication Title: Astronomy & Astrophysics
Publisher: EDP Sciences
ISSN: 0004-6361
Official Date: 2012
Dates:
DateEvent
2012Published
Volume: Vol.545
Page Range: A93
DOI: 10.1051/0004-6361/201219294
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us