The Library
The harmonic map heat flow from surfaces
Tools
Topping, Peter, 1971 (1996) The harmonic map heat flow from surfaces. PhD thesis, University of Warwick.

Text
WRAP_THESIS_Topping_1996.pdf  Submitted Version Download (3786Kb)  Preview 
Official URL: http://webcat.warwick.ac.uk/record=b1402741~S1
Abstract
We present a study of the harmonic map heat flow of Eells and Sampson in the case that
the domain manifold is a surface. Particular emphasis has been placed on the singularities
which may occur, as described by Struwe, and the analysis of the flow despite these.
In Chapter 1 we give a brief introduction to the theory of harmonic maps and their flow.
Further details are to be found in [9] and [10]. In the case that the domain manifold is a
surface we describe the existence theory for the heat flow and the theory of bubbling.
In Chapter 2 we investigate the question of the uniformity in time of the convergence of
the heat flow to a bubble tree at infinite time. In Section (2.1) (page 28) we give the first
example of a nonuniform flow. In contrast, Theorem (2.2) (page 30) provides conditions
under which the convergence is uniform and any bubbles which form are rigid.
In Chapter 3 we give the first example of a nontrivial bubble tree  in other words we give
a flow in which more than one bubble develops at the same point at infinite time.
In Chapter 4 we discuss in what sense two flows are close when their initial maps are
close. We formulate this question in various ways, providing examples of instability and
an `infinite time' stability result (Theorem (4.2), page 56) using techniques developed in
Chapter 2.
From the theory of bubbling as described in Chapter 1, if an initial map has less energy
than is required for a bubble, then the subsequent flow cannot blow up. In Chapter 5
we ask conversely whether given enough energy for a bubble, we can find an initial map
leading to blowup.
In the appendix we outline a plausible construction of a flow which can be analysed at
two different sequences of times to give convergence to two different bubble trees, with
different numbers of bubbles.
Item Type:  Thesis or Dissertation (PhD) 

Subjects:  Q Science > QA Mathematics 
Library of Congress Subject Headings (LCSH):  Harmonic maps, Heat equation 
Official Date:  April 1996 
Institution:  University of Warwick 
Theses Department:  Mathematics Institute 
Thesis Type:  PhD 
Publication Status:  Unpublished 
Supervisor(s)/Advisor:  Micallef, Mario 
Sponsors:  Engineering and Physical Sciences Research Council (EPSRC) (92006506) ; Leverhulme Trust (LT) 
Extent:  81 p. 
Language:  eng 
URI:  http://wrap.warwick.ac.uk/id/eprint/50788 
Request changes or add full text files to a record
Actions (login required)
View Item 