Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Adenosine receptor trafficking : implications for epilepsy

Tools
- Tools
+ Tools

Baines, Abigail (2011) Adenosine receptor trafficking : implications for epilepsy. PhD thesis, University of Warwick.

Research output not available from this repository, contact author.
Official URL: http://webcat.warwick.ac.uk/record=b2584660~S1

Request Changes to record.

Abstract

Adenosine receptors (ARs) modulate many cellular and systems-level processes in the mammalian CNS. However, little is known about the trafficking of ARs in neurons, despite their importance in controlling seizure activity and in neuroprotection in cerebral ischemia. To address this I examined the agonist-dependent internalisation of C-terminal GFP-tagged A1R, A2AR and A3R in primary hippocampal neurons and compared findings to CHO cells. Furthermore, I developed a novel super-ecliptic pHluorin (SEP)-tagged A1R which, via the N-terminal SEP tag, reports the cell-surface expression and trafficking of A1R in real-time. I demonstrate the differential trafficking of ARs in neurons: the A3R internalised rapidly, with the A1R internalising more slowly, and with little evidence of appreciable A2AR trafficking over the time-course of the experiments. These findings were consistent with trafficking data in CHO cells and previous literature. Futhermore, the novel SEP-A1R construct revealed the time-course of internalisation and recovery of cell surface expression to occur within minutes of agonist exposure and removal, respectively. These observations reveal the labile nature of cell surface expression of neuronal adenosine A1R and A3Rs. Given the high levels of adenosine in the brain during seizures, internalisation of the inhibitory A1R may result in hyperexcitability, increased brain damage and the development of chronic epileptic states. To test this I monitored trafficking of A1R in response to two seizure conditions, kainic acid and Mg2+free-/high K+. I observed following acute Mg2+free-/high K+ treatment an increase in dendritic puncta consistent with A1R internalisation. In addition to monitoring changes to GFP-tagged AR constructs I attempted to elucidate the effect of agonist exposure on native A1R. Electrophysical recordings revealed that localisation of ARs may impact on receptor regulation, since no evidence of internalisation was observed. This suggested that post-synaptic A1R may be more resistant to internalisation as previously noted in the literature. This study provides an initial study into the regulation of adenosine receptors in hippocampal neurons and has developed tools that will provide useful in further studies to elucidate the regulation of ARs during pathological conditions.

Item Type: Thesis or Dissertation (PhD)
Subjects: Q Science > QP Physiology
Library of Congress Subject Headings (LCSH): Adenosine -- Receptors, Neurons -- Physiology, Hippocampus (Brain) -- Physiology
Official Date: June 2011
Dates:
DateEvent
June 2011Submitted
Institution: University of Warwick
Theses Department: School of Life Sciences
Thesis Type: PhD
Publication Status: Unpublished
Supervisor(s)/Advisor: Frenguelli, Bruno G. ; Irving, Andy ; Correa, Sonia
Sponsors: Medical Research Council (Great Britain) (MRC)
Extent: xix, 319 leaves : illustrations, charts
Language: eng

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us