Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana

Tools
- Tools
+ Tools

Felle, Hubert H., Herrmann, Almut, Schäfer, Patrick, Hückelhoven, Ralph and Kogel, Karl-Heinz (2008) Interactive signal transfer between host and pathogen during successful infection of barley leaves by Blumeria graminis and Bipolaris sorokiniana. Journal of Plant Physiology, Volume 165 (Number 1). pp. 52-59. doi:10.1016/j.jplph.2007.08.006

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1016/j.jplph.2007.08.006

Request Changes to record.

Abstract

Using ion-selective microprobes, interactive signalling between barley and Blumeria graminis or Bipolaris sorokiniana has been investigated. The question was raised whether a biotrophically growing fungus manipulates the electrical driving forces (membrane potential, transmembrane pH), required for H+ cotransport of energy-rich compounds. Electrodes were positioned in the substomatal cavity of open stomata or on the leaf surface, and pH was measured continuously up to several days during fungal development. We demonstrate that surface and apoplastic fluids are electrically coupled and respond in a similar manner to stimuli. Apoplastic pH, monitored from the moment of inoculation with conidia, reveals several phases: 2–4 h after inoculation of the barley leaf with either fungus, the host displays rapid transient responses after its first contact with the fungal cell wall; apoplastic pH and pCa increases, cytoplasmic pH and pCa decreases. About 1 day after inoculation, the apoplastic pH increases by up to 2 pH units, which is thought to reflect a resistance response against the intruder. Whereas barley leaf cells possess a membrane potential of −152±5 mV, hyphae of B. graminis yield −251±8 mV, indicative of a substantial driving force advantage for the fungus. Although the resting membrane potential of barley remains constant during the first days after inoculation, leaves infected with B. sorokiniana get confronted with an energy problem, indicated by a retarded repolarization following a “light-off” stimulus. Five days after inoculation, apoplastic pH has increased to 5.97±0.47 (n=11) and does no longer respond to “light-off” when measured within lesions. In contrast, it stays at near normal values outside the lesions and responds to “light-off”.

It is concluded that biotrophically growing fungi do not manipulate the cotransport driving forces since (i) any change in apoplastic pH would be experienced by both partners; (ii) the resting membrane potential is not changed. It is suggested that measured pH changes reflect defence responses of the host against the fungus rather than fungal action to increase compatibility.

Item Type: Journal Article
Divisions: Faculty of Science > Life Sciences (2010- )
Journal or Publication Title: Journal of Plant Physiology
Publisher: Elsevier Science BV
ISSN: 0176-1617
Official Date: 2008
Dates:
DateEvent
2008Published
Volume: Volume 165
Number: Number 1
Page Range: pp. 52-59
DOI: 10.1016/j.jplph.2007.08.006
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us