Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors

Tools
- Tools
+ Tools

Yang, J., Racz, Z., Gardner, J. W., Cole, Marina and Chen, H. (2012) Ratiometric info-chemical communication system based on polymer-coated surface acoustic wave microsensors. Sensors and Actuators B: Chemical, Vol. 173 . pp. 547-554. doi:10.1016/j.snb.2012.07.043 ISSN 0925-4005.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1016/j.snb.2012.07.043

Request Changes to record.

Abstract

A novel ratiometric info-chemical communication system has been developed that is based upon an array of four surface acoustic wave (SAW) resonator microsensors operating at a frequency of 262 MHz and under ambient conditions. The info-chemical mixtures were generated by a micro-evaporator and transported to the SAW sensors inside a flow chamber. Binary mixtures of 3-methylbutan-1-ol and ethyl acetate were used to demonstrate the principle of encoding and decoding different ratios of volatile info-chemicals in this system. The resonant frequencies of the four polymer-coated SAW sensors and the associated reference (uncoated) SAW sensors were used to determine differential responses corresponding to the different ratiometric mixtures of the info-chemicals. The SAW sensors were spray coated with four different stationary phase polymer compounds, namely polycaprolactone, polyvinylcarbazole, polystyrene-co-butadiene, and polyethylene-co-vinylacetate. Principal components analysis was performed on both steady-state and dynamic features extracted from the sensor responses. Our results show clear linear separability of the different chemical ratios as distinct clusters in multi-variate space. In conclusion, we believe that this is the first demonstration of the encoding, transmitting, and decoding ratiometric information using a system based upon an array of SAW-based microsensors. This novel info-chemical communication system, based upon fixed ratios, transmits chemical information over distances that would otherwise be impossible using absolute concentrations.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Engineering > Engineering
Journal or Publication Title: Sensors and Actuators B: Chemical
Publisher: Elsevier Science BV
ISSN: 0925-4005
Official Date: October 2012
Dates:
DateEvent
October 2012Published
Volume: Vol. 173
Page Range: pp. 547-554
DOI: 10.1016/j.snb.2012.07.043
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us