Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation

Tools
- Tools
+ Tools

Ortiz, J. L., Sicardy, B., Braga-Ribas, F., Alvarez-Candal, A., Lellouch, E., Duffard, R., Pinilla-Alonso, N., Ivanov, V. D., Littlefair, S. P., Camargo, J. I. B. et al.
(2012) Albedo and atmospheric constraints of dwarf planet Makemake from a stellar occultation. Nature, Vol. 491 (No. 7425). pp. 566-569. doi:10.1038/nature11597 ISSN 0028-0836.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1038/nature11597

Request Changes to record.

Abstract

Pluto and Eris are icy dwarf planets with nearly identical sizes, comparable densities and similar surface compositions as revealed by spectroscopic studies1, 2. Pluto possesses an atmosphere whereas Eris does not; the difference probably arises from their differing distances from the Sun, and explains their different albedos3. Makemake is another icy dwarf planet with a spectrum similar to Eris and Pluto4, and is currently at a distance to the Sun intermediate between the two. Although Makemake’s size (1,420 ± 60 km) and albedo are roughly known5, 6, there has been no constraint on its density and there were expectations that it could have a Pluto-like atmosphere4, 7, 8. Here we report the results from a stellar occultation by Makemake on 2011 April 23. Our preferred solution that fits the occultation chords corresponds to a body with projected axes of 1,430 ± 9 km (1σ) and 1,502 ± 45 km, implying a V-band geometric albedo pV = 0.77 ± 0.03. This albedo is larger than that of Pluto, but smaller than that of Eris. The disappearances and reappearances of the star were abrupt, showing that Makemake has no global Pluto-like atmosphere at an upper limit of 4–12 nanobar (1σ) for the surface pressure, although a localized atmosphere is possible. A density of 1.7 ± 0.3 g cm−3 is inferred from the data.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Nature
Publisher: Nature Publishing Group
ISSN: 0028-0836
Official Date: 2012
Dates:
DateEvent
2012UNSPECIFIED
Volume: Vol. 491
Number: No. 7425
Page Range: pp. 566-569
DOI: 10.1038/nature11597
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us