Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus enterovirus types 9, 11, and 30

Tools
- Tools
+ Tools

Leitch, E. C. McWilliam, Cabrerizo, M., Cardosa, J., Harvala, H., Ivanova, O. E., Kroes, A. C. M., Lukashev, A., Muir, P., Odoom, J., Roivainen, M., Susi, P., Trallero, G., Evans, David J. and Simmonds, P. (2010) Evolutionary dynamics and temporal/geographical correlates of recombination in the human enterovirus enterovirus types 9, 11, and 30. Journal of Virology, Vol.84 (No.18). pp. 9292-9300. doi:10.1128/JVI.00783-10

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1128/JVI.00783-10

Request Changes to record.

Abstract

The relationship between virus evolution and recombination in species B human enteroviruses was investigated through large-scale genetic analysis of echovirus type 9 (E9) and E11 isolates (n = 85 and 116) from 16 European, African, and Asian countries between 1995 and 2008. Cluster 1 E9 isolates and genotype D5 and A E11 isolates showed evidence of frequent recombination between the VP1 and 3Dpol regions, the latter falling into 23 (E9) and 43 (E11) clades interspersed phylogenetically with 46 3Dpol clades of E30 and with those of other species B serotypes. Remarkably, only 2 of the 112 3Dpol clades were shared by more than one serotype (E11 and E30), demonstrating an extremely large and genetically heterogeneous recombination pool of species B nonstructural-region variants. The likelihood of recombination increased with geographical separation and time, and both were correlated with VP1 divergence, whose substitution rates allowed recombination half-lives of 1.3, 9.8, and 3.1 years, respectively, for E9, E11, and E30 to be calculated. These marked differences in recombination dynamics matched epidemiological patterns of periodic epidemic cycles of 2 to 3 (E9) and 5 to 6 (E30) years and the longer-term endemic pattern of E11 infections. Phylotemporal analysis using a Bayesian Markov chain Monte Carlo method, which placed recombination events within the evolutionary reconstruction of VP1, showed a close relationship with VP1 lineage expansion, with defined recombination events that correlated with their epidemiological periodicity. Whether recombination events contribute directly to changes in transmissibility that drive epidemic behavior or occur stochastically during periodic population bottlenecks is an unresolved issue vital to future understanding of enterovirus molecular epidemiology and pathogenesis.

Item Type: Journal Article
Subjects: Q Science > QR Microbiology > QR355 Virology
Divisions: Faculty of Science, Engineering and Medicine > Science > Life Sciences (2010- )
Journal or Publication Title: Journal of Virology
Publisher: American Society for Microbiology
ISSN: 0022-538X
Official Date: 15 September 2010
Dates:
DateEvent
15 September 2010Published
Volume: Vol.84
Number: No.18
Number of Pages: 9
Page Range: pp. 9292-9300
DOI: 10.1128/JVI.00783-10
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: Polio Eradication Initiative through the European Office of the World Health Organization, RFBR, Wellcome Trust
Grant number: 08-04-01419-a

Data sourced from Thomson Reuters' Web of Knowledge

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us