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Department of Mathematics, UT Austin, Austin 78712, TX, USA

SUMMARY

In high-throughput experiments, the sample size is typically chosen informally. Most formal sample-
size calculations depend critically on prior knowledge. We propose a sequential strategy that, by updat-
ing knowledge when new data are available, depends less critically on prior assumptions. Experiments
are stopped or continued based on the potential benefits in obtaining additional data. The underlying
decision-theoretic framework guarantees the design to proceed in a coherent fashion. We propose intu-
itively appealing, easy-to-implement utility functions. As in most sequential design problems, an exact
solution is prohibitive. We propose a simulation-based approximation that uses decision boundaries. We
apply the method to RNA-seq, microarray, and reverse-phase protein array studies and show its potential
advantages. The approach has been added to the Bioconductor package gaga.

Keywords: Decision theory; Forward simulation; High-throughput experiments; Multiple testing; Optimal design;
Sample size; Sequential design.

1. INTRODUCTION

In high-throughput studies (HTSs), the sample size is usually chosen informally. The resulting exper-
iment may either be not informative enough or unnecessarily extensive. To address this problem, we
develop a sequential design framework for HTSs. That is, we investigate the question whether the
currently available data in a typical HTS suffices and, if not, how to determine the optimal stop-
ping strategy. We focus on experiments to perform group comparisons, although our ideas remain use-
ful for other inferential goals. For simplicity, we discuss the two-group case, but our software allows
>2 groups. The proposal is based on Bayesian decision theory, so that decisions are coherent with
respect to an underlying utility function and probability model. We emphasize ease of interpretation
and use.

Several authors proposed fixed sample-size calculations for HTSs, i.e. the sample size is fixed at
the beginning of the experiment (Dobbin and Simon, 2007; Lee and Whitmore, 2004; Müller and others,
2004; Pan and others, 2002; Zien and others, 2003). The main limitations are the lack of flexibility to
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76 D. ROSSELL AND P. MÜLLER

incorporate new data and the need for a good prior guess of certain features, e.g. effect sizes or the pro-
portion of differentially expressed (DE) genes.

In contrast, sequential sample-size designs update knowledge and make decisions as data are collected,
i.e. they are robust with respect to prior choices. A sequential design stops or continues experimentation
on the basis of all available data. A potential drawback is the need to carry out experimentation in batches.
The associated increase in time or experimentation costs may outweigh the potential advantages. This
should not be a major concern in many HTSs, as most high-throughput technologies (e.g. microarrays,
sequencing, or mass spectrometry) process samples in small batches. Assessing the promise of continuing
experimentation after each batch seems natural. Also, samples may be costly to obtain or there may be
ethical concerns, e.g. in human studies. These situations offer great potential for sequential strategies.

Ruppert and others (2007), Tibshirani (2006), and Ferreira and Zwinderman (2006) proposed two-step
designs focused on microarray differential expression problems. Two-step designs adapt to the observed
data to a limited extent. Gibbons and others (2005) and Durrieu and Briollais (2009) propose sequential
designs that select a single/few genes and stop the trial when differences in expression can be estimated
with high precision. The focus on a few genes limits the application to HTS. Researchers typically use
HTS as a screening test to identify candidates, which are then validated with more precise techniques (e.g.
real-time PCR). The usual goal is not to estimate differential expression accurately but to find promising
targets. The Durrieu and Briollais (2009) model is appropriate for paired observations, e.g. two-channel
arrays.

We propose an approach for unpaired data that screens a large number of candidates and attempts
to maximize the number of promising targets. The framework is directly applicable to many probability
models and experiments, including sequencing, microarrays, and reverse-phase protein arrays (RPPAs).
With minor modifications, it can be adapted to other experimental goals. The main hurdle with decision-
theoretic optimal sequential designs is the prohibitive computational cost, even in single-outcome experi-
ments. Rossell and others (2006) developed an approach based on the ideas of Müller and others (2006),
Brockwell and Kadane (2003), and Carlin and others (1998). They compute a summary statistic S each
time new data are observed and they use decision boundaries that partition the sample space. The exper-
iment is terminated when S first falls in the stopping region. The sequential problem is reduced to the
(non-sequential) problem of finding optimal boundaries. The choice of these boundaries accounts for all
future data, which distinguishes the solution from myopic approximations. Here we extend these ideas to
high-dimensional data and apply them to differential expression problems.

Section 2 formalizes the problem and two convenient probability models. Section 3 describes sequential
stopping and the infeasibility of an exact solution. Section 4 proposes an approximate solution. Section 5
presents examples and Section 6 some concluding remarks. The supplementary material available at Bio-
statistics online contains theoretical and practical considerations, and an example with the R code.

2. DATA FORMAT AND MODEL

We motivate the discussion in the context of experiments that study differential gene expression, but the
proposal remains applicable to other setups. Let n be the number of outcomes (e.g. genes) and T be the
maximum sample size. T is usually determined by budget constraints, accrual rates, or an informed guess.
Let xi j be the measurement for gene i = 1, . . . , n and sample j = 1, . . . , T , and z j ∈ {0, . . . , nz} be the
group of sample j . For simplicity, here we assume z j ∈ {0, 1}, i.e. we compare two groups. Generalization
to nz > 1 is straightforward and is implemented in the gaga package.

A latent variable δi = 1 indicates that gene i is DE across groups and δi = 0 that it is equally expressed
(EE). The indicator δi represents the unknown truth and is part of the parameter vector. Let θ i be parame-
ters indexing a probability model for (xi1, . . . , xiT ). Optionally, let ω be additional hyper-parameters. For
example, ω could index a regression on important covariates. Let xt = {xit , 1 � i � n} be the data obtained
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Sequential stopping for high-throughput experiments 77

at time t and x1:t = {xi j , 1 � i � n, 1 � j � t} be all data available up to time t . Further, let θ = (θ1, . . . , θn)

and δ = (δ1, . . . , δn).

2.1 Probability model

Our proposal requires extensive predictive simulation and model fitting. Hence, the model must be com-
putationally efficient. For instance, the examples in Section 5 required posterior inference in millions of
simulated datasets. On the other hand, the model needs to be sufficiently flexible to capture the important
features of the data.

Here we use the GaGa (Rossell, 2009) and log-normal normal with generalized variance (NN) mod-
els (Yuan and Kendziorski, 2006) models to illustrate the approach. Both offer a reasonable compro-
mise between flexibility and computational cost. The GaGa model assumes xi j ∼ Ga(αi , αi/λi z j ). The
NN model uses xi j ∼ N (μi z j , σ

2
i ). The triple θ i = (λi0, λi1, αi ) (GaGa) or θ i = (μi0, μi1, σ

2
i ) (in the NN

model) incorporates gene-specific variability and gene-by-group specific means. A hierarchical prior on
θ i assigns positive prior probability to means being equal across groups. The GaGa hierarchical prior is

λ−1
i0 ∼ Ga(α0, α0/ν), αi |β,μ ∼ Ga(β, β/μ),

λ−1
i1 | λi0, δi ∼

{
Ga(α0, α0/ν) if δi = 1,

I (λi1 = λi0) if δi = 0,
(2.1)

and P(δi = 1) = π , independently across i . The hyper-parameters are ω = (α0, ν, β, μ, π). The NN hier-
archical prior is μi0 ∼ N (μ0, τ

2
0 ), σ−2

i ∼ Ga(ν0/2, ν0σ
2
0 /2), also with probability of ties P(δi = 1) = π ,

independently across i . For this model, ω = (μ0, τ0, ν0, σ0, π). The GaGa sampling distribution for xi j

captures asymmetries that are frequently observed in HTS. The NN assumptions are similar to those of the
popular limma approach (Smyth, 2004), which has been found useful in many applications. The supple-
mentary material available at Biostatistics online (Section 3) shows goodness-of-fit assessments that help
choose the most appropriate model for a particular dataset.

In terms of computational complexity, conditional on ω the posterior distributions are available in closed
form. We treat ω as fixed, avoiding the need for Markov Chain Monte Carlo (MCMC) simulation. This
substantially increases the computational speed. We estimate ω via expectation-maximization as in Rossell
(2009) and Yuan and Kendziorski (2006). The latter proposed a method of moments estimate for (ν0, σ

2
0 ),

which can result in overestimating π . We illustrate this issue and outline a simple procedure to adjust π̂ in
the supplementary material available at Biostatistics online (Section 4).

While we use these two models in our examples, the upcoming discussion of the optimal stopping policy
remains valid for any alternative probability model.

2.2 Pre-processing

We assume that the data are suitably pre-processed. This is critical for meaningful inference. For instance,
ignoring batch effects may bias or add uncertainty to group comparisons. We note that some technologies
such as RNA-seq may be less sensitive to batch effects, and that these can be partially mitigated by good
design, e.g. by balancing the number of samples in each group and batch. We recommend jointly pre-
processing data after every batch, as some technical biases (e.g. probe or GC-content biases) may be better
assessed once more data are collected.

Batch effects and other sources of variability may be either addressed in the pre-processing or
in the analysis by including appropriate terms in the model. Following Yang and Speed (2002) and
Durrieu and Briollais (2009), we argue in favor of the former. As an illustration, let yi j be a vector of
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78 D. ROSSELL AND P. MÜLLER

covariates that are used in the adjustment, and assume that E(xi j |μi z j , yi j ) = μi z j + g(yi j ). Here, g(·)
captures the effect of yi j on the outcome, and could represent a non-linear adjustment that cannot be cap-
tured by the analysis model. One could then use the partial residuals x̃i j = xi j − ĝ(yij) as the pre-processed
data, where ĝ(·) is an appropriate estimate of g(·).

We note that the domain of the data must match the assumptions of the model. For example, while
most technologies deliver positive expression measurements, pre-processed data may sometimes present
negative values that are not allowed in the GaGa model. A simple strategy to deal with negative values
is to define x̃i z j = xiz j + k, where the offset k > 0 ensures that x̃i z j > 0. Alternatively, define x̃i z j = exiz j ,
but this option may produce outliers that decrease the model goodness-of-fit. In practice, we recommend
trying several transformations and producing some goodness-of-fit plots (e.g. see supplementary material
available at Biostatistics online, Section 3).

3. OPTIMAL SEQUENTIAL STOPPING

3.1 Decision criterion

We formalize sequential sample-size calculation within a Bayesian decision-theoretic framework. The
optimal design is chosen by maximizing the expectation of an appropriate utility function. At each deci-
sion time, the expected utility is conditional on all available data (which may be no data at all) and
averaged with respect to uncertainty on the model parameters and future data, assuming optimal future
decisions.

It is convenient to distinguish sequential and terminal decisions. Sequential decisions correspond to
stopping vs. continuation and are made after each batch of observations. Terminal decisions are the clas-
sification of genes into EE (δi = 0) or DE (δi = 1), and are taken only upon stopping. Let st = s(x1:t ) = 1
indicate the sequential decision of stopping at time t and let st = 0 indicate continuation. Equivalently, st

can be described by the stopping time τ = min{t : st = 1}. We use st and τ interchangeably. Let di (x1:t ) = 1
(0) indicate the terminal decision to report gene i as DE (EE). Also, let d(x1:t ) = (d1(x1:t ), . . . , dn(x1:t )).
Both st and d(x1:t ) depend on all data available up to time t .

In a fully decision-theoretic approach sequential and terminal decisions are chosen to jointly maxi-
mize the expected utility. Instead, we assume a fixed rule for d(x1:t ) and focus on the optimal choice of
st only. We take terminal decisions using the Bayes rule of Müller and others (2004) to control the pos-
terior expected false discovery rate (FDR) below some specified level. The posterior expected FDR is
(1/D)

∑
di (x1:t )[1 − E(δi | x1:t )], where D = ∑

i di (x1:t ) is the number of reported positives. We use the
0.05 level throughout.

Sequential stopping decisions st are based on a utility function with sampling cost c and a unit reward
for each correctly identified DE outcome

u(st = 1, d(x1:τ ), x1:τ , δ) = −cτ +
n∑

i=1

δi di (x1:τ ). (3.1)

The second term in (3.1) is the number of true positives (TPs). The cost c is the minimum number of
TPs that make it worthwhile to obtain one more sample. This interpretation allows for easy elicitation
of c, without any reference to the formal mathematical framework. The utility function (3.1) focuses on
statistical rather than biological significance, as the size of the effect is not considered. A simple alternative
is obtained by substituting |μi1 − μi2|δi di (x1:τ ) in the summation in (3.1); see Müller and others (2004)
or Rice and others (2008) for other interesting alternatives. The upcoming discussion is independent of
the specified utility.
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Sequential stopping for high-throughput experiments 79

3.2 Optimal rule

The optimal stopping decision st maximizes u(·), in expectation over all unknowns, including parameters
(θ, δ), and future data xτ+1:T . An exact solution requires dynamic programming, also known as back-
ward induction (DeGroot, 2004). At time t , the optimal decision is to stop if the posterior expected utility
for st = 1, denoted by ūt (st = 1, x1:t ), is greater than ūt (st = 0, x1:t ). Evaluating ūt (st = 1, x1:t ) is usually
straightforward. For (3.1), we find

ūt (st = 1, x1:t ) = −ct +
n∑

i=1

P(δi = 1 | x1:t )di (x1:t ), (3.2)

where P(δi = 1|x1:t ) is the posterior probability that outcome i is DE. The expectation is with respect to
δ only, as we fix the terminal decision d(x1:t ). The posterior probability P(δi = 1|x1:t ) can be computed
in closed form for some models (including GaGa and NN) or can easily be estimated from the MCMC
output. Evaluating ūt (st = 0, x1:t ) is more challenging. An exact solution requires assessing the expected
utility for all possible future data trajectories xt+1, . . . , xT , substituting the optimal decisions st+1, . . . , sT .
The computational cost is prohibitive.

4. APPROXIMATION BY OPTIMAL DECISION BOUNDARIES

Berry and others (2001), Brockwell and Kadane (2003), DeGroot (2004), and Müller and others (2006)
discuss alternatives to an exact optimal sequential solution. Following Rossell and others (2006), we define
sequential stopping boundaries. We restrict the maximization to rules that depend on the data x1:t only
through a summary statistic St and linear boundaries that partition the sample space. We propose using
St = 
t U, where


t U ≡ Ext+1 [ūt+1(st+1 = 1, x1:t+1) | x1:t ] − ūt (st = 1, x1:t ) − c

is the one-step ahead increase in the expected utility and Ext+1(·|x1:t ) conditions on x1:t and marginalizes
with respect to future data xt+1. For (3.1), we find 
t U = 
t (TP) − c, i.e. 
t U is the expected increase
in the TPs, and decision boundaries can equivalently be written in terms of 
t (TP).

Consider the example in Figure 1. The thick black line is a decision boundary. Every time we observe
new data, we compute 
t (TP). If 
t (TP) lies above the boundary, we continue experimentation, otherwise
we stop. That is, we experiment as long as enough new TPs are expected.

Let b = (b0, b1) be the intercept and slope defining the linear boundaries, and U (b, x1:t ) be the associ-
ated expected utility given data up to time t . In other words, U (b, x1:t ) is the expected utility conditional
on x1:t when the stopping decision is based on a decision boundary indexed by b. Algorithm 1 details a
forward simulation algorithm (Carlin and others, 1998) to evaluate the required expectations, and a grid
search to carry out the maximization of U (b, x1:t ) with respect to b. The algorithm assumes that t samples
are already available. For no data use t = 0 and x1:t = ∅ (see Section 5.3).

Algorithm 1. Optimal sequential boundary determination.

(1) Forward simulation. Simulate x( j)
t+1:T from the posterior predictive P(xt+1:T | x1:t ), j = 1, . . . , B. For

each x( j)
k , compute 
t (TP)( j), k = t + 1, . . . , T .

(2) Grid search. For each b, find the stopping times τ ( j) for all saved trajectories 
t (TP)( j).
(3) Optimum. Select b� ≡ arg maxb{Ū (b, x1:t )}, where Ū (b, x1:t ) = (1/B)

∑B
j=1 ū(sτ ( j) = 1, x( j)

1:τ ( j) ).
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Fig. 1. A GaGa model based optimal sequential boundary for c = 50 (thick black line) and forward simulation trajec-
tories (light gray lines), for example, in Section 5.1.

Figure 1 shows simulated 
t (TP) as gray lines. For each boundary b, we determine the stopping time
for each trajectory and average the expected terminal utilities. At t = T − 1, we do not determine stopping
using b but the optimal rule 
T −1U > 0.

In principle b� can be recomputed every time new data are observed. Recomputation can help to
decide between multiple optima and update P(xt+1:T | x1:t ). In our examples, we determine b� only once,
either based on a pilot dataset or prior knowledge, but we indicate the usefulness of recomputation when
appropriate.

In addition to the intuitive appeal, some theoretical considerations motivate our approach. First, fixed-
sample designs are special cases, e.g. b = c(4.5,∞) results in a fixed sample size of 5. The myopic rule
of continuing as long as 
t U > 0 (Berry and Fristedt, 1985, Chapter 7) is the special case b = (c, 0). We
generalize the idea with an arbitrary boundary on 
t U. An important assurance is that 
t TP converges
to 0 as t → ∞, which guarantees eventual stopping; see supplementary material available at Biostatistics
online (Section 1) for a formal statement and proof.

5. EXAMPLES

We compare our approach and the fixed sample designs of Müller and others (2004) in several impor-
tant experimental conditions. The supplementary material available at Biostatistics online discuss pre-
processing and goodness-of-fit (Section 3) and an additional RNA-seq example with the R code
(Section 4).

5.1 Simulated microarray study

We plan collecting data in batches of 2 arrays per group, with a maximum of 20 per group (i.e. T =10
batches). Recall that c is the minimum number of new DE genes that compensate the cost of one more
batch. We consider c = 25, 50, and 100. To keep the simulation realistic, we estimated the hyper-parameters
based on data from a study of leukemia microarray data (Armstrong and others, 2002). We focus on 24
acute lymphoblastic leukemia (ALL) and 18 mixed-lineage leukemia (MLL) trans-location samples. The
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Sequential stopping for high-throughput experiments 81

Table 1. Simulated data. t∗
F : fixed sample size; t∗

S : average sequential sample size; U ∗
S − U ∗

F :
expected utility for sequential design minus the expected utility for a fixed sample

π = 0.5π̂ π = π̂ π = 2π̂

c t∗F t∗S U∗
S − U∗

F t∗S U∗
S − U∗

F t∗S U∗
S − U∗

F

GaGa
25 7 6.0 7.7 7.1 0.4 10.0 34.2
50 5 4.1 16.6 5.0 0.0 6.9 28.7
100 3 3.0 0.0 3.0 0.0 4.0 58.6

NN
25 7 5.6 11.1 7.2 0 10.0 32.4
50 4 3.2 10.8 4.1 0.1 5.7 51.2
100 3 2.0 41.9 3.0 0.1 3.0 0

estimated proportion of DE genes is π̂=0.063 under the GaGa model and 0.05 for the NN model. We
find optimal strategies based on π = π̂ , but we assess performance under model mis-specification by also
simulating data under π = 0.5π̂ and π = 2π̂ , while leaving π = π̂ unchanged in the analysis model. We
obtained 250 simulations under each scenario.

Figure 1 shows the optimal boundary for c = 50 and simulated 
t (TP) (gray lines) under the GaGa
model. Table 1 reports expected utilities and stopping times. The optimal fixed sample sizes for c = 50
under the GaGa and NN models are t∗

F = 5 and t∗
F = 4, respectively. When π = π̂ , the expected sequen-

tial sample sizes are 5.0 and 4.1 (respectively) and there is no gain in the posterior expected utility.
Sequential designs offer little advantages when the data match the prior expectations. However, when
prior expectations are unrealistic, sequential designs adapt to the observed data. When π was overstated
by the prior (π = 0.5π̂ ), sequential designs stopped earlier than the fixed sample-size designs. Conversely,
when π = 2π̂ , they stopped later so that more DE genes could be found. For instance, for c = 50 the GaGa
sequential design requires 4.1 data batches when π = 0.5π̂ and 6.9 when π = 2π̂ . The fixed design always
requires 5.

5.2 High-throughput sequencing example

We use a pilot RNA-seq dataset with two muscle and one brain human samples to design two hypothetical
studies. Study 1 compares gene expression for muscle vs. brain. Many DE genes are expected. Hypothetical
Study 2 compares the two muscle samples. No genes should be DE. In both cases, we use one sample
per group as pilot data. We consider up to T = 5 more samples, in batches of one sample. The GaGa
model provided a reasonable fit to these data (supplementary material available at Biostatistics online,
Section 3).

We determined the optimal boundary for sampling costs c = 0, 1, . . . , 100. Figure 2(a) shows that

t (TP) is maximal for t = 2 additional data batches. As suggested by Theorem 1 (supplementary mate-
rial available at Biostatistics online, Section 1), the incremental reward decreases as t grows further. The
dashed boundary shows that, for c > 66, the optimal decision is to stop experimentation. For c � 66, there
are multiple optimal b∗. The solid black lines show two optima. In both cases, the decision at t = 0 is to
continue. Since the simulated trajectories do not cross either boundary, we expect experimentation to con-
tinue up to T = 5. The future realized 
t (TP) might cross the boundary, in which case the design would
adapt and stop experimentation before T = 5. Given that the pilot data contains one sample per group,
we would re-determine b� upon observing new data.
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Fig. 2. Simulated one-step expected increase in true discoveries 
t (TP) (gray lines) and optimal boundaries for several
sampling costs c (black lines). Left: brain vs. muscle (two multiple optimal boundaries shown for c � 66), right: muscle
vs. muscle.

The hypothetical muscle vs. muscle comparison simulation is shown in Figure 2(b). In this case, 
t (TP)

is negligible and the optimal design is to stop at t = 0 (i.e. not to collect any further data) for any c > 2.
The result seems sensible as no DE genes are expected.

5.3 Microarray example

We consider the leukemia study of Campo Dell’Orto and others (2007) recording mRNA expression for
21 ALL and 15 MLL patients and 54 675 genes. We consider designing the study before any data were
available. In such circumstances, one could estimate the hyper-parameters ω from a similar study. We used
the Armstrong and others (2002) study (Section 5.1) as it was also carried on ALL/MLL patients and used
the same microarray platform. Once fixed and sequential designs were determined, we used the historical
data to compare performance. We use batches of two arrays per group, maximum T =7 batches, and c = 50.

The white bars in Figure 3 (left panels) show the expected utility under the GaGa and the NN priors
for all fixed sample sizes. The optimal fixed sample sizes are t∗

F = 5 batches (GaGa) and t∗
F = 4 (NN).

The right panels show the optimal boundaries and 
t (TP) computed from the observed data up to time
t = 1, . . . , 7. For both models, the sequential design continues up to the time horizon. Figure 3 compares
the designs by computing the posterior expected TPs (gray bars) and the number of genes with limma
P-values < 0.05 after the Benjamini and Yekutieli (2001) adjustment (black bars). At the time horizon
both quantities increase over 2-fold compared with the recommended fixed sample size. The differences
between prior and posterior expected TPs show how sequential designs adapt to the observed data to correct
prior mis-specifications.

5.4 Reverse-phase protein arrays

We design a follow-up study for the RPPA dataset dataIII that is included in the R package
RPPanalyzer (Mannsperger and others, 2010). The data contain expression for 75 proteins and 35 stage
2 and 25 stage 3 samples. Both models, the NN and GaGa models provide a reasonable fit (supplementary
material available at Biostatistics online, Section 3). The fit under the NN model is slightly better. We find
π̂ = 0.13 under the NN model, and π̂ = 0.10 under the GaGa model; that is, the estimated number of DE
proteins is 9.75 and 7.5, respectively. Although we expect several DE proteins, at a posterior expected FDR
< 0.05 the NN model calls one DE protein, and the GaGa model makes no DE calls. For comparison, only
one protein has limma BY-adjusted P-values below 0.05.
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Fig. 3. Sequential Analysis of Campo Dell’Orto’s data based on GaGa (top panels) and NN models (bottom panels).
Left panels: expected number of TP (a priori and a posteriori) vs. sample size. Black bars indicate the number of
genes with Benjanimi–Yekutieli-adjusted limma P-values < 0.05. Right panels: 
t (TP) vs. sample size and optimal
sequential boundary. 
t (TP) being above the boundary for all t indicates the experimentation continuing up to the
maximum sample size.

We consider adding batches of 50 samples per group, up to a maximum of T = 4. We set the sampling
cost to c = 1, reflecting that RPPA samples are relatively cheap. The study focuses on 75 carefully chosen
proteins. Figure 4 shows simulated 
t (TP) trajectories and the optimal boundaries. Inference under the
GaGa model estimates fewer TPs. Otherwise, inference is fairly similar across models and the optimal
boundaries are remarkably close. The average sample size is t∗

S = 1.37 under the NN model, and t∗
S = 1.32

under the GaGa model. The expected number of TPs at t∗
S is 9.46 (NN) and 6.11 (GaGa); that is, according

to both models, most DE proteins should be detected by adding 1–2 batches, i.e. 50–100 samples per group.
These results help assess the potential benefits of extending the experiment.

6. DISCUSSION

We proposed a sequential strategy for massive multiple hypotheses testing. An important advantage lies
in the generality of the proposed design. We discussed three RNA-seq, one microarray, and one RPPA
experiments. Sequential designs are robust with respect inaccurate prior guesses and provide substantial
advantages over fixed sample designs.

The proposal is formulated in a decision-theoretic framework and emphasizes interpretability. We moni-
tor the one-step ahead expected increment in utility and stop the experiment when it falls below a boundary.
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Fig. 4. Simulated 
t (TP) and optimal boundaries for c = 1 in RPPA data using GaGa (left) and NN (right) models.

The approach includes fixed sample size and myopic designs as special cases. We use terminal decisions
that control the posterior expected FDR. While inconsistent with a strict decision-theoretic setup, where
all decisions are taken to maximize the expectation of a single utility, we feel that our choice offers a
pragmatic compromise.

The method allows stopping when only one or two samples are available, which requires making strong
parametric assumptions. For instance, in Figure 3, the posterior expected TPs and 
t (TP) based on two
samples per group differ widely between the GaGa and NN models. Nevertheless, both models correctly
indicate to continue and show good agreement for subsequent samples. Whenever possible, we recommend
using a minimum burn-in (e.g. �3 samples) before starting sequential stopping. When not feasible, we
recommend assessing the goodness-of-fit carefully and updating the forward simulation when more data
are available.

We focused on group comparison experiments, but the framework can serve as the basis for other
HTSs. Interesting extensions include classification, clustering, or network discovery studies. These would
require adjusting the utility function and possibly the probability model, e.g. to capture strong dependencies
between outcomes.

Sequential designs are most appealing in moderate to large studies, where technical limitations require
gathering data in batches. They should also prove valuable when samples are costly to obtain or there are
ethical considerations, e.g. in human studies. Overall, they help save valuable resources and guarantee that
sufficient data are collected to answer the scientific questions.

SOFTWARE

An implementation of the proposed approach was added to the Bioconductor package gaga.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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