References: |
[1] S. Badia, P. Bochev, R. Lehoucq, M. L. Parks, J. Fish, M. Nuggehally, and M. Gunzburger, A force-based blending model for atomistic-to-continuum coupling, Int. J. Mult. Comp. Eng., 5 (2007), pp. 387–406. [2] S. Badia, M. Parks, P. Bochev, M. Gunzburger, and R. Lehoucq, On atomistic-tocontinuum coupling by blending, Multiscale Model. Simul., 7 (2008), pp. 381–406. [3] P. T. Bauman, H. B. Dhia, N. Elkhodja, J. T. Oden, and S. Prudhomme, On the application of the Arlequin method to the coupling of particle and continuum models, Comput. Mech., 42 (2008), pp. 511–530. [4] T. Belytschko and S. P. Xiao, Coupling methods for continuum model with molecular model, Int. J. Mult. Comp. Eng., 1 (2003), pp. 115–126. [5] T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, Atomistic simulations of nanotube fracture, Phys. Rev. B, 65 (2002), 235430. [6] X. Blanc, C. Le Bris, and F. Legoll, Analysis of a prototypical multiscale method coupling atomistic and continuum mechanics, M2AN Math. Model. Numer. Anal., 39 (2005), pp. 797–826. [7] W. Curtin and R. Miller, Atomistic/continuum coupling in computational materials science, Model. Simulat. Mater. Sci. Eng., 11 (2003), pp. R33–R68. [8] M. Dobson and M. Luskin, Analysis of a force-based quasicontinuum approximation, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 113–139. [9] M. Dobson and M. Luskin, An analysis of the eﬀect of ghost force oscillation on quasicontinuum error, M2AN Math. Model. Numer. Anal., 43 (2009), pp. 591–604. [10] M. Dobson and M. Luskin, An optimal order error analysis of the one-dimensional quasicontinuum approximation, SIAM J. Numer. Anal., 47 (2009), pp. 2455–2475. [11] M. Dobson, M. Luskin, and C. Ortner, Accuracy of quasicontinuum approximations near instabilities, J. Mech. Phys. Solids, 58 (2010), pp. 1741–1757. [12] M. Dobson, M. Luskin, and C. Ortner, Sharp stability estimates for the force-based quasicontinuum approximation of homogeneous tensile deformation, Multiscale Model. Simul., 8 (2010), pp. 782–802. [13] M. Dobson, M. Luskin, and C. Ortner, Stability, instability and error of the force-based quasicontinuum approximation, Arch. Ration. Mech. Anal., 197 (2010), pp. 179–202. [14] M. Dobson, M. Luskin, and C. Ortner, Iterative methods for the force-based quasicontinuum approximation, Comput. Methods Appl. Mech. Engrg., 200 (2011), pp. 2697–2709. [15] M. Dobson, C. Ortner, and A. V. Shapeev, The spectrum of the force-based quasicontinuum operator for a homogeneous periodic chain, Multiscale Model. Simul., 10 (2012), pp. 744– 765. [16] W. E, J. Lu, and J. Yang, Uniform accuracy of the quasicontinuum method, Phys. Rev. B, 74 (2006), 214115. [17] J. Fish, M. A. Nuggehally, M. S. Shephard, C. R. Picu, S. Badia, M. L. Parks, and M. Gunzburger, Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force, Comput. Methods Appl. Mech. Engrg., 196 (2007), pp. 4548–4560. [18] J. Jones, On the determination of molecular ﬁelds. III. From crystal measurements and kinetic theory data, Proc. Roy. Soc. London A, 106 (1924), pp. 709–718. [19] B. Van Koten and M. Luskin, Analysis of energy-based blended quasi-continuum approximations, SIAM J. Numer. Anal., 49 (2011), pp. 2182–2209. [20] X. H. Li and M. Luskin, A generalized quasi-nonlocal atomistic-to-continuum coupling method with ﬁnite range interaction, IMA J. Numer. Anal., 32 (2012), pp. 373–393. [21] P. Lin, Convergence analysis of a quasi-continuum approximation for a two-dimensional material without defects, SIAM J. Numer. Anal., 45 (2007), pp. 313–332. [22] W. K. Liu, H. Park, D. Qian, E. G. Karpov, H. Kadowaki, and G. J. Wagner, Bridging scale methods for nanomechanics and materials, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 1407–1421. [23] J. Lu and P. Ming, Convergence of a force-based hybrid method for atomistic and continuum models in three dimension, Comm. Pure Appl. Math., to appear. [24] R. Miller and E. Tadmor, The quasicontinuum method: Overview, applications and current directions, J. Comput. Aided Mater. Des., 9 (2003), pp. 203–239. [25] R. Miller and E. Tadmor, Benchmarking multiscale methods, Model. Simulat. Mater. Sci. Eng., 17 (2009), 053001. [26] P. Ming and J. Z. Yang, Analysis of a one-dimensional nonlocal quasi-continuum method, Multiscale Model. Simul., 7 (2009), pp. 1838–1875. [27] P. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels, Phys. Rev., 34 (1929), pp. 57–64. [28] C. Ortner, A priori and a posteriori analysis of the quasinonlocal quasicontinuum method in 1D, Math. Comp., 80 (2011), pp. 1265–1285. [29] C. Ortner and A. V. Shapeev, Analysis of an energy-based atomistic/continuum coupling approximation of a vacancy in the 2d triangular lattice, Math. Comp., to appear. [30] C. Ortner and E. S¨ uli, Analysis of a quasicontinuum method in one dimension, M2AN Math. Model. Numer. Anal., 42 (2008), pp. 57–91. [31] C. Ortner and L. Zhang, Construction and sharp consistency estimates for atomistic/ continuum coupling methods with general interfaces: A 2d model problem, preprint, arXiv: 1110.0168, 2011. [32] R. B. Phillips, Crystals, Defects and Microstructures: Modeling across Scales, Cambridge University Press, Cambridge, UK, 2001. [33] S. Prudhomme, H. Ben Dhia, P. T. Bauman, N. Elkhodja, and J. T. Oden, Computational analysis of modeling error for the coupling of particle and continuum models by the Arlequin method, Comput. Methods Appl. Mech. Engrg., 197 (2008), pp. 3399–3409. [34] P. Seleson and M. Gunzburger, Bridging methods for atomistic-to-continuum coupling and their implementation, Commun. Comput. Phys., 7 (2010), pp. 831–876. [35] A. V. Shapeev, Consistent energy-based atomistic/continuum coupling for two-body potentials in one and two dimensions, Multiscale Model. Simul., 9 (2011), pp. 905–932. [36] V. B. Shenoy, R. Miller, E. B. Tadmor, D. Rodney, R. Phillips, and M. Ortiz, An adaptive ﬁnite element approach to atomic-scale mechanics—the quasicontinuum method, J. Mech. Phys. Solids, 47 (1999), pp. 611–642. [37] T. Shimokawa, J. Mortensen, J. Schiotz, and K. Jacobsen, Matching conditions in the quasicontinuum method: Removal of the error introduced at the interface between the coarse-grained and fully atomistic region, Phys. Rev. B, 69 (2004), 214104. [38] E. B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Phil. Mag. A, 73 (1996), pp. 1529–1563. [39] B. Van Koten and C. Ortner, manuscript. [40] S. P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1645–1669. |