Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

The chemical diversity of exo-terrestrial planetary debris around white dwarfs

Tools
- Tools
+ Tools

Gaensicke, B. T., Koester, Detlev, Farihi, J., Girven, Jonathan, Parsons, S. G. and Breedt, E. (2012) The chemical diversity of exo-terrestrial planetary debris around white dwarfs. Monthly Notices of the Royal Astronomical Society, Volume 424 (Number 1). pp. 333-347. doi:10.1111/j.1365-2966.2012.21201.x ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1111/j.1365-2966.2012.21201.x

Request Changes to record.

Abstract

We present Hubble Space Telescope (HST) ultraviolet spectroscopy of the white dwarfs PG 0843+516, PG 1015+161, SDSS 1228+1040, and GALEX 1931+0117, which accrete circumstellar planetary debris formed from the destruction of asteroids. Combined with optical data, a minimum of five and a maximum of 11 different metals are detected in their photospheres. With metal sinking time-scales of only a few days, these stars are in accretion/diffusion equilibrium, and the photospheric abundances closely reflect those of the circumstellar material. We find C/Si ratios that are consistent with that of the bulk Earth, corroborating the rocky nature of the debris. Their C/O values are also very similar to those of bulk Earth, implying that the planetary debris is dominated by Mg and Fe silicates. The abundances found for the debris at the four white dwarfs show substantial diversity, comparable at least to that seen across different meteorite classes in the Solar system. PG 0843+516 exhibits significant overabundances of Fe and Ni, as well as of S and Cr, which suggests the accretion of material that has undergone melting, and possibly differentiation. PG 1015+161 stands out by having the lowest Si abundance relative to all other detected elements. The Al/Ca ratio determined for the planetary debris around different white dwarfs is remarkably similar. This is analogous to the nearly constant abundance ratio of these two refractory lithophile elements found among most bodies in the Solar system.

Based on the detection of all major elements of the circumstellar debris, we calculate accretion rates of ≃1.7 × 108 to ≃1.5 × 109 g s−1. Finally, we detect additional circumstellar absorption in the Si IV 1394, 1403 Å doublet in PG 0843+516 and SDSS 1228+1040, reminiscent to similar high-ionization lines seen in the HST spectra of white dwarfs in cataclysmic variables. We suspect that these lines originate in hot gas close to the white dwarf, well within the sublimation radius.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Wiley
ISSN: 0035-8711
Official Date: July 2012
Dates:
DateEvent
July 2012Published
Volume: Volume 424
Number: Number 1
Page Range: pp. 333-347
DOI: 10.1111/j.1365-2966.2012.21201.x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us