Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Nitroso-redox status and vascular function in marginal and severe ascorbate deficiency

Tools
- Tools
+ Tools

Garcia-Saura, Maria-Francisca, Saijo, Fumito, Bryan, Nathan S., Bauer, Selena, Rodriguez, Juan and Feelisch, Martin (2012) Nitroso-redox status and vascular function in marginal and severe ascorbate deficiency. Antioxidants & Redox Signaling, Volume 17 (Number 7). pp. 937-950. doi:10.1089/ars.2011.4201

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1089/ars.2011.4201

Request Changes to record.

Abstract

Marginal vitamin C (ascorbic acid) deficiency is a prevalent yet underappreciated risk factor for cardiovascular disease. Along with glutathione, ascorbate plays important roles in antioxidant defense and redox signaling. Production of nitric oxide (NO) and reactive oxygen species and their interaction, giving rise to nitroso and nitrosyl product formation, are key components of the redox regulation/signaling network. Numerous in vitro studies have demonstrated that these systems are interconnected via multiple chemical transformation reactions, but little is known about their dynamics and significance in vivo. Aims: We sought to investigate the time-course of changes in NO/redox status and vascular function during ascorbate depletion in rats unable to synthesize vitamin C. Results: We here show that both redox and protein nitros(yl)ation status in blood and vital organs vary dynamically during development of ascorbate deficiency. Prolonged marginal ascorbate deficiency is associated with cell/tissue-specific perturbations in ascorbate and glutathione redox and NO status. Scurvy develops earlier in marginally deficient compared to adequately supplemented animals, with blunted compensatory NO production and a dissociation of biochemistry from clinical symptomology in the former. Paradoxically, aortic endothelial reactivity is enhanced rather than impaired, irrespective of ascorbate status. Innovation/Conclusion: Enhanced NO production and protein nitros(yl)ation are integral responses to the redox stress of acute ascorbate deprivation. The elevated cardiovascular risk in marginal ascorbate deficiency is likely to be associated with perturbations of NO/redox-sensitive signaling nodes unrelated to the regulation of vascular tone. This new model may have merit for the future study of redox-sensitive events in marginal ascorbate deficiency.

Item Type: Journal Article
Divisions: Faculty of Medicine > Warwick Medical School > Biomedical Sciences > Translational & Experimental Medicine > Metabolic and Vascular Health (- until July 2016)
Faculty of Medicine > Warwick Medical School
Journal or Publication Title: Antioxidants & Redox Signaling
Publisher: Mary Ann Liebert, Inc. Publishers
ISSN: 1523-0864
Official Date: 2 August 2012
Dates:
DateEvent
2 August 2012Published
Volume: Volume 17
Number: Number 7
Page Range: pp. 937-950
DOI: 10.1089/ars.2011.4201
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access
Funder: National Institute of Health (NIH) , Strategic Appointment Scheme of the Medical Research Council (MRC)
Grant number: HL 69029 (NIH)

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us