The Library
Modeling and computation of two phase geometric biomembranes using surface finite elements
Tools
Elliott, Charles M. and Stinner, Björn. (2010) Modeling and computation of two phase geometric biomembranes using surface finite elements. Journal of Computational Physics, Vol.229 (No.18). pp. 65856612. ISSN 00219991

PDF
WRAP_stinner_0772844ma260811twophasebiomembrane_num.pdf  Accepted Version  Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader Download (1271Kb) 
Official URL: http://dx.doi.org/10.1016/j.jcp.2010.05.014
Abstract
Biomembranes consisting of multiple lipids may involve phase separation phenomena leading to coexisting domains of different lipid compositions. The modeling of such biomembranes involves an elastic or bending energy together with a line energy associated with the phase interfaces. This leads to a free boundary problem for the phase interface on the unknown equilibrium surface which minimizes an energy functional subject to volume and area constraints. In this paper we propose a new computational tool for computing equilibria based on an L2 relaxation flow for the total energy in which the line energy is approximated by a surface GinzburgLandau phase field functional. The relaxation dynamics couple a nonlinear fourth order geometric evolution equation of Willmore flow type for the membrane with a surface AllenCahn equation describing the lateral decomposition. A novel system is derived involving second order elliptic operators where the field variables are the positions of material points of the surface, the mean curvature vector and the surface phase field function. The resulting variational formulation uses HI spaces, and we employ triangulated surfaces and H1 conforming quadratic surface finite elements for approximating solutions. Together with a semiimplicit time discretization of the evolution equations an iterative scheme is obtained essentially requiring linear solvers only. Numerical experiments are presented which exhibit convergence and the power of this new method for two component geometric biomembranes by computing equilibria such as dumbbells, discocytes and starfishes with lateral phase separation.
Item Type:  Journal Article 

Subjects:  Q Science > QA Mathematics Q Science > QP Physiology 
Divisions:  Faculty of Science > Mathematics 
Library of Congress Subject Headings (LCSH):  Bilayer lipid membranes  Mathematical models, Finite element method 
Journal or Publication Title:  Journal of Computational Physics 
Publisher:  Academic Press Inc. Elsevier Science 
ISSN:  00219991 
Date:  1 September 2010 
Volume:  Vol.229 
Number:  No.18 
Number of Pages:  28 
Page Range:  pp. 65856612 
Identification Number:  10.1016/j.jcp.2010.05.014 
Status:  Peer Reviewed 
Publication Status:  Published 
Access rights to Published version:  Restricted or Subscription Access 
Funder:  Deutsche Forschungsgemeinschaft (DFG), Engineering and Physical Sciences Research Council (EPSRC) 
Grant number:  STI 579/11,2 (DFG), EP/G010404 (EPSRC) 
References:  [1] D. Andelman, T. Kawakatsu, and K. Kawasaki, Equilibrium shape of twocomponent unilamellar membranes and vesicles, Europhys. Lett., 19 (1992), pp. 57–62. [2] J. W. Barrett, H. Garcke, and R. N¨urnberg, Parametric approximation of Willmore flow and related geometric evolution equations, SIAM J. Sci. Comput., 31 (2008), pp. 225–253. [3] T. Baumgart, S. Hess, and W.Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, 425 (2003), pp. 821–824. [4] T. Baumgart, S. L. Das, W. Webb, and J. Jenkin, Membrane elasticity in giant vesicles with fluid phase coexistence, Biophys. J., 89 (2005), pp. 1067–1084. [5] T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advectedfield approach, Phys. Rev. E, 67 (2003), pp. 0319081–5. [6] T. Biben, K. Kassner, and C. Misbah, Phasefield approach to threedimensional vesicle dynamics, Phys. Rev. E, 72 (2005), pp. 0419211–15. [7] M. Bloor and M. Wilson, Method for efficient shape parametrization of fluid membranes and vesicles, Phys. Rev. E, 61 (2000), pp. 4218–4229. [8] A. Bobenko and P. Schr¨oder, Discrete Willmore flow, in Eurographics Symp. Geom. Processing, M. Desbrun and H. Pottmann, eds., 2005. [9] A. Bonito, R. H. Nochetto, and M. S. Pauletti, Parametric FEM for geometric biomembranes, J. Comp. Phys., (submitted) (2009). [10] S. Brenner and L. Scott, The Mathematical Theory of Finite Element Methods, no. 15 in Texts in Applied Mathematics, Springer, third ed., 2007. [11] P. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the red blood cell, J. Theor. Biol., 26 (1970), pp. 61– 81. [12] T. A. Davis, Algorithm 832: UMFPACK, an unsymmetricpattern multifrontal method, ACM Trans. Math. Software, 30 (2004), pp. 196199. [13] K. Deckelnick, G. Dziuk, and C. M. Elliott, Computation of geometric partial differential equations and mean curvature flow, Acta Numerica, 14 (2005), pp. 139–232. [14] A. Demlow, Higherorder finite element methods and pointwise error estimates for elliptic problems on surfaces, SIAM J. Numer. Anal., 47 (2009), pp. 805–827. [15] Q. Du, C. Liu, and X. Wang, A phase field approach in the numerical study of the elastic bending energy for vesicle membranes, J. Comp. Phys., 198 (2004), pp. 450–468. [16] , Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions, J. Comp. Phys., 212 (2006), pp. 757–777. [17] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differential equations and calculus of variations, S. Hildebrandt and R. Leis, eds., vol. 1357 of Lecture Notes in Mathematics, Springer, 1988, pp. 142–155. [18] , Computational parametric Willmore flow, Numerische Mathematik, 111 (2008), pp. 55–80. [19] G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Num. Anal., 25 (2007), pp. 385–407. [20] , Surface finite elements for parabolic equations, J. Comp. Math., 25 (2007), pp. 385–407. [21] C. Eilks and C. M. Elliott, Numerical simulation of dealloying by surface dissolution via the evolving surface finite element method, J. Comput. Phys., 227 (2008), pp. 9727–9741. [22] C. M. Elliott and B. Stinner, A surface phase field model for twophase biological membranes, submitted. [23] E. A. Evans, Bending resistance and chemically induced moments in membrane bilayers, Biophys. J., 14 (1974), pp. 923–931. [24] F. Feng and W. Klug, Finite element modeling of liquid bilayer membranes, J. Comp. Phys., 220 (2006), pp. 394–408. [25] H. Garcke, B. Nestler, B. Stinner, and F. Wendler, AllenCahn systems with volume constraints, Math. Mod. Meth. Appl. Sci., 18 (2008), pp. 1347–1381. [26] M. E. Gurtin, Configurational forces as basic concepts of continuum physics, Applied Mathematical Sciences, 137 (2000), SpringerVerlag, New York. [27] C.J. Heine, Computations of form and stability of rotating drops with finite elements, PhD thesis, Faculty for Mathematics, Informatics, and Natural Sciences, University of Aachen, 2003. [28] , Isoparametric finite element approximation of curvature on hypersurfaces, J. Comp. Math., (submitted). [29] W. Helfrich, Elastic properties of lipid bilayers: theory and possible experiments, Z. Naturforschung, C 28 (1973), pp. 693–703. [30] L. Hsu, R. Kusner, and J. Sullivan, Minimizing the squared mean curvature integral for surfaces in space forms, Exp. Math., 1 (1992), pp. 191– 207. [31] F. J¨ulicher and R. Lipowsky, Domaininduced budding of vesicles, Phys. Rev. Lett., 70 (1993), pp. 2964–2967. [32] , Shape transformations of vesicles with intramembrane domains, Phys. Rev. E, 53 (1996), pp. 2670–2683. [33] L. Ma and W. Klug, Viscous regularization and radaptive remeshing for finite element analysis of lipid membrane mechanics, J. Comp. Phys., 227 (2008), pp. 5816–5835. [34] R. Rusu, An algorithm for the elastic flow of surfaces, Interfaces and Free Boundaries, 7 (2005), pp. 229–239. [35] A. Schmidt and K. G. Siebert, Design of adaptive finite element software: The finite element toolbox ALBERTA, vol. 42 of Lecture notes in computational science and engineering, Springer, 2005. [36] U. Seifert, Configurations of fluid membranes and vesicles, Adv. Phys., 46 (1997), pp. 1–137. [37] T. Taniguchi, Shape deformations and phase separation dynamics of twocomponent vesicles, Phys. Rev. Lett., 76 (1996), pp. 4444–4447. [38] U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesiclesphasediagram for spontaneouscurvature and bilayercoupling models, Phys. Rev. A, 44 (1991), pp. 1182–1202. [39] X. Wang and Q. Du, Modelling and simulations of multicomponent lipid membranes and open membranes via diffuse interface approaches, J. Math. Biol., 56 (2008), pp. 347–371. [40] T. J. Willmore, Riemannian Geometry, Clarendon Press, Oxford, 1993. [41] W. Wintz, H. D¨obereiner, and U. Seifert, Starfish vesicles, Europhys. Lett., 33 (1996), pp. 403–408. 
URI:  http://wrap.warwick.ac.uk/id/eprint/5509 
Data sourced from Thomson Reuters' Web of Knowledge
Actions (login required)
View Item 