Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

An accurate mass and radius measurement for an ultracool white dwarf

Tools
- Tools
+ Tools

Parsons, S. G., Gänsicke, B. T. (Boris T.), Marsh, T. R., Bergeron, P., Copperwheat, C. M., Dhillon, V. S., Bento, J., Littlefair, S. P. and Schreiber, M. R. (2012) An accurate mass and radius measurement for an ultracool white dwarf. Monthly Notices of the Royal Astronomical Society, Volume 426 (Number 3). pp. 1950-1958. doi:10.1111/j.1365-2966.2012.21773.x ISSN 0035-8711.

Research output not available from this repository.

Request-a-Copy directly from author or use local Library Get it For Me service.

Official URL: http://dx.doi.org/10.1111/j.1365-2966.2012.21773.x

Request Changes to record.

Abstract

Studies of cool white dwarfs in the solar neighbourhood have placed a limit on the age of the Galactic disc of 8–9 billion years. However, determining their cooling ages requires the knowledge of their effective temperatures, masses, radii and atmospheric composition. So far,
these parameters could only be inferred for a small number of ultracool white dwarfs for which an accurate distance is known, by fitting their spectral energy distributions in conjunction with a theoretical mass–radius relation. However, the mass–radius relation remains largely untested, and the derived cooling ages are hence model dependent. Here we report direct measurements
of the mass and radius of an ultracool white dwarf in the double-lined eclipsing binary SDSS J013851.54−001621.6. We find M WD = 0.529 ± 0.010 M� and R
WD = 0.0131 ± 0.0003 R�. Our measurements are consistent with the mass–radius relation and we determine a robust cooling age of 9.5 billion years for the 3570 K white dwarf. We find that the mass
and radius of the low-mass companion star, Msec = 0.132 ± 0.003 M� and Rsec = 0.165 ± 0.001 R�, are in agreement with evolutionary models. We also find evidence that this>9.5 Gyr old M5 star is still active, far beyond the activity lifetime for a star of its spectral type. This is
likely caused by the high tidally enforced rotation rate of the star. The companion star is close to filling its Roche lobe and the system will evolve into a cataclysmic variable in only 70 Myr. Our direct measurements demonstrate that this system can be used to calibrate ultracool white
dwarf atmospheric models.

Item Type: Journal Article
Divisions: Faculty of Science, Engineering and Medicine > Science > Physics
Journal or Publication Title: Monthly Notices of the Royal Astronomical Society
Publisher: Wiley
ISSN: 0035-8711
Official Date: 2012
Dates:
DateEvent
2012Published
Volume: Volume 426
Number: Number 3
Page Range: pp. 1950-1958
DOI: 10.1111/j.1365-2966.2012.21773.x
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us