Skip to content Skip to navigation
University of Warwick
  • Study
  • |
  • Research
  • |
  • Business
  • |
  • Alumni
  • |
  • News
  • |
  • About

University of Warwick
Publications service & WRAP

Highlight your research

  • WRAP
    • Home
    • Search WRAP
    • Browse by Warwick Author
    • Browse WRAP by Year
    • Browse WRAP by Subject
    • Browse WRAP by Department
    • Browse WRAP by Funder
    • Browse Theses by Department
  • Publications Service
    • Home
    • Search Publications Service
    • Browse by Warwick Author
    • Browse Publications service by Year
    • Browse Publications service by Subject
    • Browse Publications service by Department
    • Browse Publications service by Funder
  • Help & Advice
University of Warwick

The Library

  • Login
  • Admin

Thermochromic organometallic complexes: experimental and theoretical studies of 16- to 18-electron interconversions of adducts of arene Ru(ii) carboranes with aromatic amine ligands

Tools
- Tools
+ Tools

Barry, Nicolas P. E., Deeth, Robert J., Clarkson, Guy J., Prokes, Ivan and Sadler, P. J. (2013) Thermochromic organometallic complexes: experimental and theoretical studies of 16- to 18-electron interconversions of adducts of arene Ru(ii) carboranes with aromatic amine ligands. Dalton Transactions, Volume 42 (Number 7). pp. 2580-2587. doi:10.1039/c2dt32650g

Research output not available from this repository, contact author.
Official URL: http://dx.doi.org/10.1039/C2DT32650G

Request Changes to record.

Abstract

A series of 18-electron complexes of general formula [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)(L)] (p-cym = para-cymene; L = 4-dimethylaminopyridine (2), nicotinamide (3), 3-ethynylpyridine (4), N-methylimidazole (5), 4-cyanopyridine (6), and pyridine (7)) were synthesised by reactions between the 16-electron precursor [Ru(p-cym)(1,2-dicarba-closo-dodecaborane-1,2-dithiolato)] (1) and corresponding heterocyclic bases. X-ray crystal structures of complexes 2 and 5 were determined. In dichloromethane and chloroform solutions at ambient temperature, the 18-electron complexes 2–7 are in equilibrium with the 16-electron precursor 1. Each equilibrium is displaced towards the formation of the blue 16-electron or yellow 18-electron complex by increasing or decreasing the temperature of the solution, respectively, which results in controlled and reversible thermochromism. Binding constants (K) and Gibbs free energies (ΔG°) of the six equilibria have been determined by a combination of experiments (Job plots, UV-visible titrations, NMR studies) and also by computation (time-dependent density functional theory, TD-DFT). A linear free energy relationship for log K versus pKa for the pyridine and imidazole ligands was established. The predicted strong interactions of 1 with other aromatic amine ligands, such as amphetamine derivatives, were verified experimentally. This appears to be the first report of reversible 16/18-electron interconversions with associated thermochromic properties for a well-known family of complexes.

Item Type: Journal Article
Divisions: Faculty of Science > Chemistry
Journal or Publication Title: Dalton Transactions
Publisher: Royal Society of Chemistry
ISSN: 1477-9226
Official Date: 6 December 2013
Dates:
DateEvent
6 December 2013Published
Volume: Volume 42
Number: Number 7
Page Range: pp. 2580-2587
DOI: 10.1039/c2dt32650g
Status: Peer Reviewed
Publication Status: Published
Access rights to Published version: Restricted or Subscription Access

Request changes or add full text files to a record

Repository staff actions (login required)

View Item View Item
twitter

Email us: wrap@warwick.ac.uk
Contact Details
About Us