Observation of Associated Near-Side and Away-Side Long-Range Correlations in $\sqrt{s_{NN}} = 5.02$ TeV Proton-Lead Collisions with the ATLAS Detector

G. Aad et al.*
(ATLAS Collaboration)
(Received 20 December 2012; published 1 May 2013)

Two-particle correlations in relative azimuthal angle ($\Delta \phi$) and pseudorapidity ($\Delta \eta$) are measured in $\sqrt{s_{NN}} = 5.02$ TeV $p + $ Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 $\mu$b$^{-1}$ of data as a function of transverse momentum ($p_T$) and the transverse energy ($\Sigma E_T^{\rm Pb}$) summed over $3.1 < \eta < 4.9$ in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range ($2 < |\Delta \eta| < 5$) “near-side” ($\Delta \phi \sim 0$) correlation that grows rapidly with increasing $\Sigma E_T^{\rm Pb}$. A long-range “away-side” ($\Delta \phi \sim \pi$) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small $\Sigma E_T^{\rm Pb}$, is found to match the near-side correlation in magnitude, shape (in $|\Delta \eta|$ and $\Delta \phi$) and $\Sigma E_T^{\rm Pb}$ dependence. The resultant $\Delta \phi$ correlation is approximately symmetric about $\pi/2$, and is consistent with a dominant $\cos 2\Delta \phi$ modulation for all $\Sigma E_T^{\rm Pb}$ ranges and particle $p_T$.

DOI: 10.1103/PhysRevLett.110.182302 PACS numbers: 25.75.−q

Proton-nucleus ($p + A$) collisions at the Large Hadron Collider (LHC) provide both an interesting environment for the study of QCD at high parton density and important baseline measurements, especially for the interpretation of results from the LHC Pb + Pb program [1]. In particular, it has been suggested that $p + $ Pb collisions at LHC energies are an important system for the study of a possible saturation of the growth of parton densities at low Bjorken-x.

High-multiplicity events provide a rich environment for studying observables associated with high parton densities in hadronic collisions. An important tool to probe the physics of these events is the two-particle correlation function measured in terms of the relative pseudorapidity ($\Delta \eta$) and azimuthal angle ($\Delta \phi$) of selected particle pairs, $C(\Delta \eta, \Delta \phi)$. The first studies of two-particle correlation functions in the highest-multiplicity $p + $ Pb collisions at the LHC [2] showed an enhanced production of pairs of particles at $\Delta \phi \sim 0$, with the correlation extending over a wide range in $\Delta \eta$, a feature frequently referred to as a “ridge.” Many of the physics mechanisms proposed to explain the $p + $ Pb ridge, including multiparton interactions [3], parton saturation [4–6], and collective expansion of the final state [7], are also expected to be relevant in $p + $ Pb collisions. A recent measurement by the CMS Collaboration [8] has demonstrated that a ridge is clearly visible over $|\Delta \eta| < 4$ in high-multiplicity $p + $ Pb collisions at the LHC. During final preparation of this Letter, the ALICE Collaboration submitted a Letter addressing similar physics, within the range $|\Delta \eta| < 1.8$, with some differences in the analysis technique [9].

To provide further insight into the physical origin of these long-range correlations, this Letter presents ATLAS measurements of two-particle angular correlations over $|\Delta \eta| < 5$ in $p + $ Pb collisions, based on an integrated luminosity of approximately 1 $\mu$b$^{-1}$ recorded during a short run in September 2012. The LHC was configured with a 4 TeV proton beam and a 1.57 TeV per-nucleon Pb beam that together produced collisions with a nucleon-nucleon center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV and a rapidity shift of $-0.47$ relative to the ATLAS rest frame [10].

The measurements presented in this Letter are performed using the ATLAS inner detector (ID), forward calorimeters (FCal), minimum-bias trigger scintillators (MBTS), and the trigger and data acquisition systems [11]. The ID measures charged particles within $|\eta| < 2.5$ using a combination of silicon pixel detectors, silicon microstrip detectors, and a straw-tube transition radiation tracker, all immersed in a 2 T axial magnetic field [12]. The MBTS detect charged particles over $2.1 < |\eta| < 3.9$ using two hodoscopes of 16 counters positioned at $z = \pm 3.6$ m. The FCal consists of two sections that cover $3.1 < |\eta| < 4.9$. The FCal modules are composed of tungsten and copper absorbers with liquid argon as the active medium, which together provide 10 interaction lengths of material. Minimum-bias $p + $ Pb collisions are selected by a trigger that requires a signal in at least two MBTS counters.

The $p + $ Pb events used for this analysis are required to have a reconstructed vertex containing at least two associated tracks, with its $z$ position satisfying $|z_{\text{vtx}}| < 150$ mm. Noncollision backgrounds and photonuclear interactions are suppressed by requiring at least one hit in a MBTS counter on each side of the interaction point.

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
and the difference between times measured on the two sides to be less than 10 ns. Events containing multiple $p + \text{Pb}$ collisions (pileup) are suppressed by rejecting events with two reconstructed vertices that are separated in $z$ by more than 15 mm. The residual pileup fraction is estimated to be $\leq 10^{-4}$. About $1.95 \times 10^6$ events pass these event selection criteria.

Charged particle tracks are reconstructed in the ID using an algorithm optimized for $p + p$ minimum-bias measurements [13]. In this analysis, the tracks are required to have $p_T > 0.3$ GeV and $|\eta| < 2.5$, at least seven hits in the silicon detectors (out of a typical value of 11), and a hit in the first pixel layer when one is expected. In addition, the transverse ($d_0$) and longitudinal ($z_0\sin\theta$) impact parameters of the tracks measured with respect to the primary vertex are required to be less than 1.5 mm and to satisfy $|d_0/\sigma_{d_0}| < 3$ and $|z_0\sin\theta/\sigma_{z_0}| < 3$, respectively, where $\sigma_{d_0}$ and $\sigma_z$ are uncertainties on $d_0$ and $z_0\sin\theta$ obtained from the track-fit covariance matrix.

The efficiency, $\epsilon(p_T, \eta)$, for track reconstruction and track selection cuts is evaluated using $p + \text{Pb}$ Monte Carlo events produced with the HIJING event generator [14] with a center-of-mass boost matching the beam conditions. The response of the detector is simulated using GEANT4 [15,16] and the resulting events are reconstructed with the same algorithms as applied to the data. The efficiency-corrected multiplicity of charged particles with $p_T > 0.4$ GeV and $|\eta| < 2.5$ have been calculated for each $\Sigma E_{T}^{\text{ph}}$ range, yielding $\langle N_{ch}^{\text{eff}} \rangle = 150 \pm 7$, $\sigma_{N_{ch}^{\text{eff}}} = 35 \pm 2$ for central events and $\langle N_{ch}^{\text{eff}} \rangle = 25 \pm 1$, $\sigma_{N_{ch}^{\text{eff}}} = 18 \pm 1$ for peripheral events.

The two-particle correlation (2PC) analyses are performed in different intervals of $\Sigma E_{T}^{\text{ph}}$, the sum of transverse energy measured in the FCal with $3.1 < \eta < 4.9$ (in the $z$ direction of the lead beam) with no correction for the difference in response to electrons and hadrons. The distribution of $\Sigma E_{T}^{\text{ph}}$ for events passing all selection criteria is shown in Fig. 1. These events are divided into 12 $\Sigma E_{T}^{\text{ph}}$ intervals (indicated by vertical lines in Fig. 1) to study the variation of 2PC with overall event activity. Two larger intervals, $\Sigma E_{T}^{\text{ph}} > 80$ GeV and $\Sigma E_{T}^{\text{ph}} < 20$ GeV, containing 2% and 52% of the events, respectively, hereafter referred to as “central” and “peripheral,” are used for detailed studies of the 2PC at high and low overall event activity. The quantity $\Sigma E_{T}^{\text{ph}}$ instead of charged particle multiplicity is used to characterize the event activity, since the latter is observed to have strong correlations with the 2PC measurements, particularly for events selected with low and high multiplicities. However, for reference, the average ($\langle N_{ch}^{\text{eff}} \rangle$) and the standard deviation ($\sigma_{N_{ch}^{\text{eff}}}$) of the efficiency-corrected multiplicity of charged particles with $p_T > 0.4$ GeV and $|\eta| < 2.5$ have been calculated for each $\Sigma E_{T}^{\text{ph}}$ range, yielding $\langle N_{ch}^{\text{eff}} \rangle = 150 \pm 7$, $\sigma_{N_{ch}^{\text{eff}}} = 35 \pm 2$ for central events and $\langle N_{ch}^{\text{eff}} \rangle = 25 \pm 1$, $\sigma_{N_{ch}^{\text{eff}}} = 18 \pm 1$ for peripheral events.

The correlation functions are given [17–19] by

$$
C(\Delta \phi, \Delta \eta) = \frac{S(\Delta \phi, \Delta \eta)}{B(\Delta \phi, \Delta \eta)}, \quad C(\Delta \phi) = \frac{S(\Delta \phi)}{B(\Delta \phi)},
$$

where $\Delta \phi = \phi_a - \phi_b$ and $\Delta \eta = \eta_a - \eta_b$ and $S$ and $B$ represent pair distributions constructed from the same event and from “mixed events,” [20] respectively. The labels $a$ and $b$ denote the two particles in the pair (conventionally referred to as “trigger” and “associated” particles, respectively [8]), which may be selected from different $p_T$ intervals. The mixed-event distribution, $B(\Delta \phi, \Delta \eta)$, that measures uncorrelated pair yields was constructed by choosing pairs of particles from different events of similar $z_{vtx}$ and track multiplicity, to match the effects of detector acceptance, occupancy, and material on $S(\Delta \phi, \Delta \eta)$, and of similar $\Sigma E_{T}^{\text{ph}}$. The 1D distributions $S(\Delta \phi)$ and $B(\Delta \phi)$ are obtained by integrating $S(\Delta \phi, \Delta \eta)$ and $B(\Delta \phi, \Delta \eta)$, respectively, over $2 < |\Delta \eta| < 5$. This $|\Delta \eta|$ range is chosen to focus on the long-range features of the correlation functions. The normalization of $C(\Delta \phi, \Delta \eta)$ is chosen such that the $\Delta \phi$-averaged value of $C(\Delta \phi)$ is unity. To correct $S(\Delta \phi, \Delta \eta)$ and $B(\Delta \phi, \Delta \eta)$ for the inefficiencies, each particle is weighted by the inverse of the tracking efficiency. Remaining detector distortions not accounted for in the efficiency largely cancel in the same-event to mixed-event ratio.

Examples of 2D correlation functions are shown in Figs. 2(a) and 2(b) for charged particles with $0.5 < p_T^{a,b} < 4$ GeV in peripheral and central events. The correlation function for peripheral events shows a sharp peak centered at $(\Delta \phi, \Delta \eta) = (0, 0)$ due to pairs originating from the same jet, Bose-Einstein correlations, as well as high-$p_T$ resonance decays, and a broad structure at $\Delta \phi \sim \pi$ from dijets, low-$p_T$ resonances, and momentum conservation that is collectively referred to as “recoil” in the remainder of this Letter. In the central events, the correlation function reveals a ridgelike structure at $\Delta \phi \sim 0$ (the near-side) that extends over the full measured $\Delta \eta$ range, with an amplitude of a few percent. The distribution at $\Delta \phi \sim \pi$
However $Y(\Delta \phi)$ is sensitive to the uncertainty on the tracking efficiency correction for the associated particles. This uncertainty is estimated by varying the track quality cuts and the detector material in the simulation, reanalyzing the data using corresponding Monte Carlo efficiencies and evaluating the change in the extracted $Y(\Delta \phi)$. The resulting uncertainty on $Y(\Delta \phi)$ is estimated to be 2.5% due to the track selection and 2%–3% related to the limited knowledge of detector material. The analysis procedure is validated by measuring correlation functions in fully simulated HIJING events [15,16] and comparing it to the correlations measured using the generated particles. The agreement is better than 2% for $C(\Delta \phi)$ and better than 3% for $Y(\Delta \phi)$.

Figure 2(c) shows the $Y(\Delta \phi)$ distributions for $2 < |\Delta \eta| < 5$ in peripheral and central events separately. The yield for the peripheral events has an approximate $1 - \cos \Delta \phi$ shape with an away-side maximum, characteristic of a recoil contribution. In contrast, the yield in the central events has near-side and away-side peaks with the away-side peak having a larger magnitude. These features are consistent with the onset of a significant $\cos 2 \Delta \phi$ component in the distribution. To quantify further the properties of these long-range components, the distributions are integrated over $|\Delta \phi| < \pi/3$ and $|\Delta \phi| > 2\pi/3$, and plotted as a function of $\Sigma E_T^p$ in Fig. 2(d). The near-side yield is close to 0 for $\Sigma E_T^p < 20$ GeV and increases with $\Sigma E_T^p$, consistent with the CMS result [8]. The away-side yield shows a similar variation as a function of $\Sigma E_T^p$, except that it starts at a value significantly above zero, even for events with low $\Sigma E_T^p$. The yield difference between these two regions is found to be approximately independent of $\Sigma E_T^p$, indicating that the growth in the yield with increasing $\Sigma E_T^p$ is the same on the near-side and away-side.

To further investigate the connection between the near-side and away-side, the $Y(\Delta \phi)$ distributions for peripheral and central events are shown in Fig. 3 in various $p_T^a$ ranges with $0.5 < p_T^a < 4$ GeV. Distributions of the difference between central and peripheral yields, $\Delta Y(\Delta \phi)$, are also shown in this Figure. This difference is observed to be nearly symmetric around $\Delta \phi = \pi/2$. To illustrate this symmetry, the $\Delta Y(\Delta \phi)$ distributions in Fig. 3 are overlaid with functions $a_0 + 2a_2 \cos 2\Delta \phi$ and $a_0 + 2a_2 \cos 2\Delta \phi + 2a_3 \cos 3\Delta \phi$, with the coefficients calculated as $a_n = \langle \Delta Y(\Delta \phi) \cos n\Delta \phi \rangle$. Using only the $a_0$ and $a_2$ terms describes the $\Delta Y$ distributions reasonably well, indicating that the long-range component of the two-particle correlations can be approximated described by a recoil contribution plus a $\Delta \phi$-symmetric component. The inclusion of the $a_3$ term improves slightly the agreement with the data.

The near-side and away-side yields integrated over $|\Delta \phi| < \pi/3$ and $|\Delta \phi| > 2\pi/3$, respectively ($Y_{int}$), and the differences between those integrated yields in central and peripheral events ($\Delta Y_{int}$) are shown in Fig. 4 as a function of $p_T^a$. The yields are shown separately for the two $\Sigma E_T^p$ ranges in panels (a) and (b) and the differences

FIG. 2 (color online). Two-dimensional correlation functions for (a) peripheral events and (b) central events, both with a truncated maximum to suppress the large correlation at $(\Delta \eta, \Delta \phi) = (0, 0)$; (c) the per-trigger yield $\Delta \phi$ distribution together with pedestal levels for peripheral ($b_{\text{ZYAM}}^b$) and central ($b_{\text{ZYAM}}^c$) events, and (d) integrated per-trigger yield as function of $\Sigma E_T^p$ for pairs in $2 < |\Delta \eta| < 5$. The shaded boxes represent the systematic uncertainties, and the statistical uncertainties are smaller than the symbols.

(the away-side) is also broadened relative to peripheral events, consistent with the presence of a long-range component in addition to that seen in peripheral events.

The strength of the long-range component is quantified by the “per-trigger yield,” $Y(\Delta \phi)$, which measures the average number of particles correlated with each trigger particle, folded into the $0-\pi$ range [2,17–19],

$$Y(\Delta \phi) = \left( \frac{\mu N_a}{\pi N_a} \right) C(\Delta \phi) - b_{\text{ZYAM}}.$$  

where $N_a$ denotes the number of efficiency-weighted trigger particles, and $b_{\text{ZYAM}}$ represents the pedestal arising from uncorrelated pairs. The parameter $b_{\text{ZYAM}}$ is determined via a zero-yield-at-minimum (ZYAM) method [17,21] in which a second-order polynomial fit to $C(\Delta \phi)$ is used to find the location of the minimum point, $\Delta \phi_{\text{ZYAM}}$, and from this to determine $b_{\text{ZYAM}}$. The stability of the fit is studied by varying the $\Delta \phi$ fit range. The uncertainty in $b_{\text{ZYAM}}$ depends on the local curvature around $\Delta \phi_{\text{ZYAM}}$ and is estimated to be 0.3%–1% of the minimum value of $C(\Delta \phi)$. At high $p_T$ where the number of measured counts is low, this uncertainty is of the same order as the statistical uncertainty.

The systematic uncertainties due to the tracking efficiency are found to be negligible for $C(\Delta \phi)$, since detector effects largely cancel in the correlation function ratio.
are shown in panels (c) and (d). Qualitatively, the differences have a similar $p_T$ dependence and magnitude on the near-side and away-side; they rise with $p_T$ and reach a maximum around 3–4 GeV. This pattern is visible for the near-side even before subtraction, as shown in panel (a), but is less evident in the unsubtracted away-side due to the dominant contribution of the recoil component. A similar dependence is observed for long-range correlations in $\text{Pb} + \text{Pb}$ collisions at approximately the same $p_T$ [22,23].

The relative amplitude of the $\cos n \Delta \phi$ modulation of $\Delta Y(\Delta \phi)$, $c_n$, for $n = 2, 3$ can be estimated using $a_n$, and the extracted value of $b_{\text{ZYAM}}$ for central events,

$$c_n = a_n/(b_{\text{ZYAM}}$C + $a_0$). (3)

Figure 4(e) shows $c_2$ and $c_3$ as a function of $p_T$ for $0.5 < p_T < 4$ GeV. The value of $c_2$ is much larger than $c_3$ and exhibits a behavior similar to $\Delta Y(\Delta \phi)$ at the near-side and away-side. Using the techniques discussed in Ref. [23], $c_n$ can be converted into an estimate of $s_n$, the average $n$th Fourier coefficient of the event-by-event single-particle $\phi$ distribution, by assuming the factorization relation $c_n(p_T^b, p_T^b) = s_n(p_T^b) s_n(p_T^b)$. From this, $s_n(p_T^b)$ is calculated as $s_n(p_T^b) = c_n(p_T^b, p_T^b)/\sqrt{c_n(p_T^b, p_T^b)}$, where $c_n(p_T, p_T)$ is obtained from Eq. (3) using the $a_n$ extracted from the difference between the central and peripheral data shown in Fig. 2(c). The $s_2(p_T)$ values obtained this way exceed 0.1 at $\sim 2$–4 GeV, as shown in Fig. 4(f). The $s_2(p_T)$ values are smaller than $s_2(p_T)$ over the measured $p_T$ range. The factorization relation used to compute $s_2(p_T)$ is found to be valid within 10%–20% when selecting different subranges of $p_T$ within 0.5–4 GeV, while the precision of $s_2(p_T)$ data does not allow a quantitative test of the factorization. The analysis is also repeated for correlation functions separately constructed from like-sign pairs and unlike-sign pairs, and the resulting $c_n$ and $s_n$ coefficients are found to be consistent within their statistical and systematic uncertainties.

In summary, ATLAS has measured two-particle correlation functions in $\sqrt{s_{NN}} = 5.02$ TeV $p + \text{Pb}$ collisions in different intervals of $\Sigma E_T^{\text{jet}}$ over $2 < |\Delta \eta| < 5$. An away-side contribution is observed that grows rapidly with increasing $\Sigma E_T^{\text{jet}}$ and which matches many essential features of the near-side ridge observed here, as well as in previous high-multiplicity $p + p$, $p + \text{Pb}$ and $\text{Pb} + \text{Pb}$ data at the LHC. Thus, while the ridge in $p + p$ and $p + \text{Pb}$ collisions has been characterized as a near-side phenomenon, these results show that it has both near-side and away-side components that are symmetric around $\Delta \phi \sim \pi/2$, with a $\Delta \phi$ dependence that is approximately described by a $\cos 2\Delta \phi$.
modulation. A Fourier decomposition of the correlation function, $C(\Delta \phi)$, yields a pair cos2$\Delta \phi$ amplitude of about 0.01 at $p_T \sim 3$ GeV, corresponding to a single-particle amplitude of about 0.1. Similar findings are obtained independently by the ALICE Collaboration [9], albeit over a more restricted phase space ($|\Delta y| < 1.8$ and $p_T < 2$–4 GeV). The two results are found to be consistent within this common region.

Some of the features of the data, including the presence of an away-side component, are qualitatively predicted in the color glass condensate approach [6], which models the saturation of the parton distribution in the Pb nucleus. The estimated amplitudes of the modulation on the saturation of the parton distribution in the Pb nucleus.

...

(ATLAS Collaboration)

1 School of Chemistry and Physics, University of Adelaide, Adelaide, Australia  
2 Physics Department, SUNY Albany, Albany, New York, USA  
3 Department of Physics, University of Alberta, Edmonton, Alberta, Canada  
4a Department of Physics, Ankara University, Ankara, Turkey  
4b Department of Physics, Gazi University, Ankara, Turkey  
4c Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey  
4d Turkish Atomic Energy Authority, Ankara, Turkey  
5 LAPP, CNRS/IN2P3 and Université de Savoie, Annecy-le-Vieux, France  
6 High Energy Physics Division, Argonne National Laboratory, Argonne, Illinois, USA  
7 Department of Physics, University of Arizona, Tucson, Arizona, USA  
8 Department of Physics, The University of Texas at Arlington, Arlington, Texas, USA  
9 Physics Department, University of Athens, Athens, Greece  
10 Physics Department, National Technical University of Athens, Zografou, Greece  
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan  
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona and ICREA, Barcelona, Spain  
13a Institute of Physics, University of Belgrade, Belgrade, Serbia  
13b Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia  
14 Department for Physics and Technology, University of Bergen, Bergen, Norway  
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley, California, USA  
16 Department of Physics, Humboldt University, Berlin, Germany  
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland  
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom  
19a Department of Physics, Bogazici University, Istanbul, Turkey  
19b Division of Physics, Dogus University, Istanbul, Turkey  
19c Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey  
20a INFN Sezione di Bologna, Italy  
20b Dipartimento di Fisica, Università di Bologna, Bologna, Italy  
21 Physikalisches Institut, University of Bonn, Bonn, Germany  
22 Department of Physics, Boston University, Boston, Massachusetts, USA  
23 Department of Physics, Brandeis University, Waltham, Massachusetts, USA  
24a Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro, Brazil  
24b Federal University of Juiz de Fora (UFJF), Juiz de Fora, Brazil  
24c Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei, Brazil  
24d Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil  
25 Physics Department, Brookhaven National Laboratory, Upton, New York, USA  
26a National Institute of Physics and Nuclear Engineering, Bucharest, Romania  
26b University Politehnica Bucharest, Bucharest, Romania  
26c West University in Timisoara, Timisoara, Romania  
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina  
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom  
29 Department of Physics, Carleton University, Ottawa, Ontario, Canada  
30 CERN, Geneva, Switzerland  
31 Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA  
32a Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile  
32b Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile  
33 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China  
33b Department of Modern Physics, University of Science and Technology of China, Anhui, China  
33c Department of Physics, Nanjing University, Jiangsu, China  
182302-14
135c Faculté des Sciences Semlalia, Université Cadi Ayyad, LPHEA-Marrakech, Morocco
135d Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda, Morocco
136 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers),
CEA Saclay (Commissariat à l’Énergie Atomique et aux Énergies Alternatives), Gif-sur-Yvette, France
137 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz, California, USA
138 Department of Physics, University of Washington, Seattle, Washington, USA
139 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
140 Department of Physics, Shinsa University, Nagano, Japan
141 Fachbereich Physik, Universität Siegen, Siegen, Germany
142 Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada
143 SLAC National Accelerator Laboratory, Stanford, CA, USA
144a Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava, Slovak Republic
144b Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
145 Department of Physics, University of Johannesburg, Johannesburg, South Africa
145b School of Physics, University of the Witwatersrand, Johannesburg, South Africa
146a Department of Physics, Stockholm University, Sweden
146b The Oskar Klein Centre, Stockholm, Sweden
147 Physics Department, Royal Institute of Technology, Stockholm, Sweden
148 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook, New York, USA
149 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
150 School of Physics, University of Sydney, Sydney, Australia
151 Institute of Physics, Academia Sinica, Taipei, Taiwan
152 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
153 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
154 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
155 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
156 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
157 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
158 Department of Physics, University of Toronto, Toronto, Ontario, Canada
159a TRIUMF, Vancouver BC, Canada
159b Department of Physics and Astronomy, York University, Toronto, Ontario, Canada
160 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
161 Department of Physics and Astronomy, Tufts University, Medford, Massachusetts, USA
162 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
163 Department of Physics and Astronomy, University of California Irvine, Irvine, California, USA
163b INFN Gruppo Collegato di Udine, Italy
164 ICTP, Trieste, Italy
164c Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
165 Department of Physics, University of Illinois, Urbana, Illinois, USA
166 Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
167 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
168 Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada
169 Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, Canada
170 Department of Physics, University of Warwick, Coventry, United Kingdom
171 Waseda University, Tokyo, Japan
172 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
173 Department of Physics, University of Wisconsin, Madison, Wisconsin, USA
174 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
175 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
176 Department of Physics, Yale University, New Haven, Connecticut, USA
177 Yerevan Physics Institute, Yerevan, Armenia
178 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Deceased.
b Also at Department of Physics, King’s College London, London, United Kingdom.
c Also at Laboratorio de Instrumentación e Física Experimental de Partículas-LIP, Lisboa, Portugal.
d Also at Faculdade de Ciências e CFNUL, Universidade de Lisboa, Lisboa, Portugal.
e Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom.