Original citation:

Permanent WRAP url:
http://wrap.warwick.ac.uk/56611

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the University of Warwick available open access under the following conditions.

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc. For more details see:
http://creativecommons.org/licenses/by/3.0/

A note on versions:
The version presented in WRAP is the published version, or, version of record, and may be cited as it appears here.

For more information, please contact the WRAP Team at: publications@warwick.ac.uk
The endoplasmic reticulum (ER) is a highly dynamic organelle in eukaryotic cells. It connects to other cellular compartments (e.g., nucleus, Golgi apparatus, mitochondria, peroxisomes, plasma membrane (PM)) and, as one of the largest Ca²⁺ stores, participates in intracellular Ca²⁺ signaling. It is further involved in lipid and hormone biosynthesis (Staehelin, 1997; Sparkes et al., 2009; Lynes and Simmen, 2011). Importantly, the ER quality control (ER-QC) system mediates and monitors the processing and folding of secretory proteins destined for transport to the PM, vacuole, or apoplast, identifies misfolded proteins and transfers them to the ER-associated degradation (ERAD) machinery (Vitale and Boston, 2008; Liu and Howell, 2010; Hüttner and Strasser, 2012). Among the proteins processed by the plant’s ER-QC are important PM-resident proteins involved in adaptation to environmental stress, e.g., hormone or immune receptors (Saijo, 2010). ER integrity is central to proper function of cells and whole organisms. Especially under stress conditions, any impairment of ER function can result in disturbed plant development and plant immunity (Wang et al., 2005; Vitale and Boston, 2008; Saijo, 2010).

REGULATION OF ER INTEGRITY AND ER STRESS SIGNALING IN EUKARYOTES

Protein folding demand and capacities in the ER are usually in equilibrium. However, responses to environmental stresses create an increased requirement for secreted proteins. If this demand exceeds the ER-QC working capacity, unfolded proteins accumulate in the ER, which the cell senses as ER stress. Prolonged ER-stress impairs ER function and thus threatens cellular integrity. Chemicals, such as the N-glycosylation inhibitor tunicamycin (TM) or the reducing agent dithiothreitol (DTT), which inhibits the formation of disulfide bonds, are widely used to induce and examine ER stress (Martínez and Chrispeels, 2003; Kamauchi et al., 2005; Vitale and Boston, 2008; Liu and Howell, 2010).

In animals, mainly three ER membrane proteins constitute the cell’s ER stress surveillance system: the type I transmembrane protein kinase/endoribonuclease inositol-requiring enzyme 1 (IRE1α and β), the type I transmembrane protein kinase RNA-like ER kinase (PERK), and the type II transmembrane basic leucine-zipper (bZIP) domain-containing activating transcription factor 6 (ATF6). In yeast cells, IRE1 is the only ER stress sensor (Mori, 2009). Under non-stressed conditions, luminal parts of these ER stress sensors bind to luminal binding proteins (BiPs), which keeps the sensors in an inactive state. If unfolded proteins accumulate, BiPs disconnect from ER stress sensors to mediate processing of unfolded proteins. Once liberated, ER stress sensors initiate different adaptive signaling cascades defined as unfolded protein response (UPR) to re-establish proper ER function. The UPR enhances the synthesis of antioxidants and ER-QC members, attenuates translation, suppresses expression of secretory genes, and elevates ERAD of unfolded proteins (Schröder, 2006, 2008; Liu and Howell, 2010; Horts, 2012; Higa and Chevet, 2012; Jäger et al., 2012). Figure 1A summarizes processes involved in UPR activation by the three ER stress sensors in animals. BiP release allows ATF6-translocation to the Golgi apparatus, where its cytosolic part (cATF6), a functional bZIP transcription factor, is cleaved off by serine proteases S1P and S2P, a process called regulated intramembrane proteolysis (RIP). cATF6 then enters the nucleus and promotes transcription of UPR genes and the bZIP transcription factor XBP1 (Yoshida et al., 2001). Upon BiP release, IRE1 oligomerizes and activates its endoribonuclease domain, leading...
to the unconventional splicing of a 26 nucleotide intron out of XBP1 or its yeast counterpart HAC1, which allows the resulting proteins to enter the nucleus (Mori, 2009; Walter and Ron, 2011; Hetz, 2012). Phosphorylation by the PERK kinase activates the eukaryotic translation initiation factor eIF2α, which attenuates translation but selectively promotes the translation of the transcription factor ATF4 (Harding et al., 2000). Eventually, ATF4, ATF6, and XBP1 (HAC1) elevate transcription of UPR genes (Mori, 2009; Walter and Ron, 2011; Hetz, 2012).

In plants, the ER-QC and ER stress responses are apparently conserved as suggested by sequence homologies found in Arabidopsis for members of the ER translocon and oligosaccharyltransferase complexes as well as for UPR and ERAD components (Liu and Howell, 2010). Further, transcripts of genes encoding proteins of the ER-QC machinery (e.g., chaperones BiPs, CALRETICULINS (CIRs), CALNEXINS (CNXs) or PROTEIN DISULFIDE ISOMERASES (PDI)s), or the ERAD pathway are induced by ER stress (Ishido-Van Dooren et al., 1999; Leborgne-Castel et al., 1999; Koizumi et al., 2001; Martínez and Chropicka, 2003; Kamauchi et al., 2005; Lu and Christopher, 2008; Su et al., 2011; Hüttner and Strasser, 2012). Putative plant ER stress sensors and signaling components have been identified (Figure 1B), however, except for IRE, respective plant proteins do not show sequence but structural or functional homology (Koizumi et al., 2001; Liu and Howell, 2010). Arabidopsis possesses at least two IRE1-like proteins, while only one homolog is present in rice (Oryza sativa), AtIRE1a, AtIRE1b, and OsIRE1 harbor all structural features of yeast and mammalian IRE1. AtIRE1a and OsIRE1 are capable of autotransphosphorylation, and the putative ER stress sensor domain of AtIRE1a, AtIRE1b, and OsIRE1 can functionally replace that of yeast IRE1 (Koizumi et al., 2001; Noh et al., 2002; Okushima et al., 2002). There are at least three ER-resident transmembrane XBP1 splicing factors in Arabidopsis, which are involved in ER stress responses, AtbZIP28, AtbZIP28, and AtbZIP60 (Urade, 2009; Liu and Howell, 2010). 

Arabidopsis mutants do not display morphological or developmental differences under non-stress conditions, but are more sensitive to salt stress (AtbZIP17, Liu et al., 2007b), heat (AtbZIP28, Gao et al., 2008), or DTT treatment (AtbZIP60, Humbert et al., 2012). The expression of salt stress responsive genes is impaired in AtbZIP17 mutants (Liu et al., 2007b) as is the induction of canonical UPR genes in AtbZIP28 and AtbZIP60 mutants after TM treatment (Iwata and Koizumi, 2005a; Liu et al., 2007a; Iwata et al., 2008; Liu and Christopher, 2008; Tajima et al., 2008). Similar to ATF6 in mammals, AtbZIP17 and AtbZIP28 possess canonical SIP cleavage sites and are activated by a RIP-like process upon ER stress (Liu et al., 2007a,b, 2008a; Gao et al., 2008; Tajima et al., 2008; Che et al., 2010). RIP of AtbZIP17 and AtbZIP28 requires passage through the Golgi apparatus, where cleavage by the subtilisin-like serine protease AtS1P and subsequent processing by the metalloprotease AtS2P take place (Liu et al., 2007a,b; Che et al., 2010; Srivastava et al., 2012). How these bZIPs sense ER stress and how Golgi transition is mediated, is not clear. However, TM treatment apparently promotes the interaction of AtbZIP28 with the small GTPase SAR1b and the guaniidine exchange factor SEC12, which are putatively involved in coat protein complex II (COPII) vesicle formation during ER-LoGoI transport (Srivastava et al., 2012). AtbZIP60 lacks a canonical SIP cleavage site and its activation is independent of SIP and SP2 (Iwata et al., 2008). Similar to mammalian XBP1 and yeast HAC1, recent studies in Arabidopsis and rice revealed unconventional splicing of a 23 nucleotide intron from the AtbZIP60 mRNA by AtIRE1b or AtIRE1a, and a 20 nucleotide intron from its rice ortholog OshbZIP58/OshbZIP74 mRNA by OsIRE1, e.g., after TM or salicylic acid (SA) treatment. This leads to a frame-shift that removes the transmembrane domain of the new proteins and allows nuclear entrance (Deng et al., 2011; Nagashima et al., 2011; Hayashi et al., 2012; Humbert et al., 2012; Liu et al., 2012; Morimoto et al., 2012). There are no obvious PERK homologs in Arabidopsis (Koizumi et al., 2001; Urade, 2009).
ER STRESS AS INITIATOR OF PROGRAMMED CELL DEATH

The UPR is supposed to ensure cell survival. However, under prolonged or severe ER stress, mammalian cells activate an apoptosis-like programmed cell death (ER-PCD) to eliminate damaged cells from stressed organisms (Schröder, 2006; Hetz, 2012; Jäger et al., 2012). The ER stress sensors ATF6, PERK, and IRE1 are central regulators of this process as well (Figure 1C), although it is unclear how they perceive and differentiate signals to switch from UPR to apoptosis. ER-PCD obviously merges with other apoptosis pathways, involving enhanced generation of reactive oxygen species (ROS), and apoptosis-promoting Ca\(^{2+}\) signaling at ER and mitochondria (Chakrabarti et al., 2011; Gorman et al., 2012; Hetz, 2012; Jäger et al., 2012). The induction of the pro-apoptotic BH3 transcription factor CHOP (C/EBP-homologous protein) by ATF6 and PERK/ATF4 during ER-PCD apparently is most relevant. CHOP down-regulates anti-apoptotic proteins (e.g., BCL-2), but induces members of the pro-apoptotic BH3-only protein family, e.g., BIM (BCL-2-INTERACTING MEDIATOR OF CELL DEATH) or GADD34 (GROWTH ARREST AND DNA DAMAGE-INDUCIBLE 34; Gorman et al., 2012; Hetz, 2012; Jäger et al., 2012). In addition, IRE1 activates ER-PCD by interacting with TRAF2 (TUMOR NECROSIS FACTOR RECEPTOR-ASSOCIATED FACTOR 2; Gorman et al., 2012; Hetz, 2012; Jäger et al., 2012). This initiates consecutive phosphorylation of ASK1 (APOPTOSIS SIGNAL-REGULATING KINASE 1) and JNK (JUN N-TERMINAL KINASE). Phosphorylation by JNK inactivates anti-apoptotic regulators such as BCL-2, but activates pro-apoptotic BH3-only proteins such as BIM or BID (BH3-interacting domain death agonist). BH3-only proteins promote the cell death activation-related oligomerization and translocation of BAX and BAK to the mitochondrial membrane, followed by cytochrome c release and caspase activation for execution of apoptosis. BCL-2-dependent regulation of Ca\(^{2+}\) homeostasis of the ER also affects permeability transition and apoptosis signaling at mitochondria (Chakrabarti et al., 2011; Gorman et al., 2012; Hetz, 2012). BAX and BAK themselves can interact with IRE1 and promote its ability to activate ASK1 and JNK, processes that are apparently blocked by the cell survival protein BI-1 (BAX INHIBITORY-1; Bailly-Maitre et al., 2009; Libiona et al., 2009). Dynamic differential interactions with pro- and anti-apoptotic proteins modulated by the intensity and duration of ER stress signals might regulate separate functions of IRE1, and timely coordinated on- and offset of ATF6, PERK, and IRE1 signaling may play a decisive role in determining cell fate. In such a scenario, ER stress would initially activate the adaptive UPR via IRE1-mediated splicing of XPRI. However, down-regulation of the IRE1/XBP1 branch upon prolonged ER stress may give rise to pro-apoptotic IRE1/TRAF2/ASK1/JNK, RIDD, and/or PERK signaling (Gorman et al., 2012; Hetz, 2012). Autophagy is further suggested to abolish ER stress in yeast and mammals as it might support the removal of unfolded proteins (Bernales et al., 2006). Here, the PERK-eIF2\(\alpha\)-ATF4 and IRE1/TRAFF2/JNK pathways might connect autophagy to ER stress via the BECLIN1- BCL2 interaction and the induction of autophagy genes, respectively. Although ER stress-associated autophagy is thought to have a cytoprotective function, other studies suggest a role in ER-PCD. However, regulators of this cell death pathway and its link to ER stress are currently unknown (Verfaillie et al., 2010; Aronson and Davies, 2012).

As in animal cells, cell death follows induction of UPR in TM-treated plants (Zuppini et al., 2004; Iwata and Koizumi, 2005b; Watanabe and Lam, 2008; Ishikawa et al., 2011). The molecular basis of plant ER-PCD and the role of plant bZIPs therein are largely unknown (Figure 1D). However, regulation of ER-PCD seems to be partially conserved across kingdoms, as Arabidopsis B1-1 (ABI1-1) is involved in restriction of ER-PCD in Arabidopsis as well (Watanabe and Lam, 2008; Ishikawa et al., 2011). ABI1-1 is AtZIP60-dependently up-regulated in response to TM (Kamauchi et al., 2005; Iwata et al., 2008; Watanabe and Lam, 2008). ABI1-1-mediated inhibition of ER-PCD in Arabidopsis is likely un-related to UPR modification, but rather to the suppression of ER-dependent ROS production or regulation of cell death associated ER Ca\(^{2+}\) homeostasis (Watanabe and Lam, 2008, 2009). In Arabidopsis, a Gip subunit of an ER-resident heterotrimeric GTP-binding protein, AG81, might be involved in the promotion of ER-PCD (Wang et al., 2007; Chen and Brandizzi, 2012). Disturbed ER protein retention after silencing of NtERD2a/NtERD2b interferes with ER-OC and reduces ER stress alleviation, resulting in enhanced PCD in response to bacterial pathogens (Xu et al., 2012). New insights into the role of vacuolar processing enzymes with caspase-like activities in the execution of ER-PCD come from Qiang et al. (2012). These studies demonstrate the dependence of the mutualistic fungus Pireformospora indica on ER-PCD for successful Arabidopsis root colonization. P. indica induces ER stress but suppresses the adaptive UPR pathway. Consequently, the P. indica-induced ER stress triggers a vacuolar cell death pathway whose execution depends on \(\gamma\) VACUOLAR PROCESSING ENZYME (\(\gamma\)VPE). This ER-PCD can be phenocopied by the application of TM to Arabidopsis roots. The analyses further show that \(\gamma\)VPE is responsible for enhanced VPE and caspase 1-like activities during TM- and P. indica-induced ER-PCD (Qiang et al., 2012).

ER – EXECUTOR OF PLANT IMMUNITY AND PUTATIVE TARGET OF PATHOGEN EFFECTORS

Plants ward off pathogens by a multi-layered immune system. PM localized pattern recognition receptors (PRRs) detect conserved molecules, so-called microbe-associated molecular patterns (MAMPs), of invading microbes. Well-characterized PRRs are FLAGELLIN-SENSING 2 (FLS2), which recognizes bacterial flagellin, the ELONGATION-FACTOR TU (EF-Tu) RECEPTOR (EFR), which detects bacterial EF-Ta, and the chitin receptors CHITIN ELICITOR BINDING PROTEIN (CER1) and CHITIN ELICITOR RECEPTOR KINASE (CERK; Monaghan and Zipfel, 2012). MAMP perception by these PRRs initiates immune signaling pathways and the synthesis of antimicrobial pathogenesis-related (PR) proteins (Jones and Dangl, 2006; Boller and Felix, 2009). Successful pathogens have evolved effector molecules to suppress MTI. Plant RESISTANCE (R) proteins specifically recognize pathogen effectors or their activities and initiate effector-triggered immunity
ER in immunity and PCD

Aronson, L. I., and Davies, F. E. et al., 2009; Lu et al., 2009; Nekrasov et al., 2009; Saijo et al., 2009; glucose:glycoprotein glucosyltransferase (UGGT)/CRT3 cycle and (STT3A), glucosidase II, the H/KDEL receptor ERD2b, the UDP-
tem, which involves staurosporine and temperature sensitive-3a
PRRs (e.g., EFR) rely on
and genes encoding proteins of the secretory pathway during SAR (Wang et al., 2005). Secondly, synthesis and proper function of
PRRs (e.g., EFR) rely on N-glycosylation and the ER-QC sys-
tem, which involves staurosporine and temperature sensitive-3a
PRRs (e.g., EFR) rely on

REFERENCES

Eichmann and Schäfer

ER in immunity and PCD

Frontiers in Plant Science | Plant Proteomics August 2012 | Volume 3 | Article 200 | #4

*fps-03-00200* — 2012/8/20 — 19:35 — page 4 — #4


Eichmann and Schäfer

ER in immunity and PCD

Frontiers in Plant Science | Plant Proteomics

August 2012 | Volume 3 | Article 200 | 6

untitled